期刊文献+

H_2O在Cu(111)表面吸附和解离的第一性原理 被引量:1

First-principles study of adsorption and dissociation of H_2O on Cu(111)surface
下载PDF
导出
摘要 为了研究H_2O对锂离子电池负极集流体铜表面的影响,采用基于密度泛函理论的第一性原理方法,对H_2O在Cu(111)面的吸附和解离进行了计算。通过Materials Studio软件的Dmol 3模块,计算了相关的几何参数、能垒和态密度等。研究结果表明,H_2O在清洁和预吸附O的Cu(111)表面吸附的最稳定吸附位置都为top位,且H_2O都以分子形态进行吸附。通过态密度分析表明,当H_2O在预吸附O的Cu(111)表面吸附时,O 2p态与Cu 3d态有较强的杂化作用,而在清洁表面则不明显;H_2O在清洁Cu(111)表面解离的能垒为148.54kJ/mol,当在预吸附O原子的Cu(111)表面解离时,能垒明显降低到92.73kJ/mol,表明预吸附O原子能促进H_2O在Cu(111)表面的解离。 In order to study the influence of H2O on the copper current collector for lithiumion batteries, adsorption and dissociation of H2O on Cu(111) surface were calculated by the first-principles calculation method based on the density functional theory. The related geometry, energy barrier, density of states and so on were computed by Dmol3 module of the Materials Studio package. The results indicated that the most stable adsorption sites of H2 O on a clean and a pre-adsorbed O atom Cu(111) are both top sites, and H2O preferred the molecular adsorption. The analysis on the density of states showed that the orbital hybridization between O 2p and Cu 3d states was quite strong for H2 O adsorption on pre-adsorbed O surface, and the hybridization was weak on the clean surface. The energy barrier for H2 O dissociation on the clean Cu(111) surface was 148.54 kJ/mol, while the dissociating energy decreases obviously to 92.73 kJ/mol with the aid of the O atom, which revealed that the pre-adsorbed O atom can promote the dissociation of HzO on Cu(111) surface.
出处 《长沙理工大学学报(自然科学版)》 CAS 2017年第2期92-97,共6页 Journal of Changsha University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(51471036)
关键词 第一性原理 CU(111) 表面吸附 解离 能垒 态密度 first-principles Cu(111) surface adsorption dissociation energy barrier density of state
  • 相关文献

参考文献1

二级参考文献34

  • 1施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613. 被引量:66
  • 2安平,王剑.锂离子电池在国防军事领域的应用[J].新材料产业,2006(9):34-40. 被引量:18
  • 3Padhi A K,Nanjundaseamy K S,Goodenough J B.Phospho-olivnes as positive electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4):1188-1194.
  • 4Nanjundaseamy K S,Padhi A K,Goodenough J B,et al.Synthesis redox potential evaluation and electrochemical characteristic of NASICON-related-3D framework compounds[J].Solid State Ionics,1996,92(1-2):1-10.
  • 5Thomas M G,Bruce P G,Goodenough J B.Lithium mobility in the layered oxide Li1-xCoO2[J].Solid State Ionics,1985,1(1):13-19.
  • 6Jang Y I,Chiang Y M.Stability of the monoclinic and orthorhomhic,phases of LiMnO2 with temperature,oxygen partial ressure,and A1 doping[J].Solid State Ionics,2000,130(1):53-59.
  • 7Storey C,Kargina I,Grincourt Y,et al.Electrochemical characterization of a new high capacity cathode[J].Journal of Power Sources,2001,97-98:541-544.
  • 8Armstrong A R,Robertson A D,Bruce P G.Structural transformation on cycling layered Li (Mn1-y Coy)O2 cathode materials[J].Electrochimica Acta,1999,45(1-2):285-294.
  • 9Jiang J B,Du K,Cao Y B,etal.Synthesis of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance[J].Journal of Alloys and Compounds,2013,577(1):138-142.
  • 10Zhao S,Bai Y,Ding L H,et al.Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries[J].Solid State Ionics,2013,247(1):22-29.

共引文献116

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部