期刊文献+

高职生学习沉浸体验的量表编制与特点研究 被引量:12

Study on the Scale Compilation and Characteristics of Learning Flow Experience of Higher Vocational College Students
下载PDF
导出
摘要 为探究高职生学习沉浸体验的特点,先编制了《大学生学习沉浸度量表》,经项目分析、探索性与验证性因素分析确定了量表的八个维度:挑战与技能平衡、目标明确、任务专注、控制感、自成目的性体验、自我意识丧失与时间错觉、思维流畅、学习自评,该量表符合沉浸体验的理论构想,具有较高的信效度,适用于评估大学生的学习沉浸体验。后以该量表为工具,调查发现,高职生的学习沉浸度总体高于本科生,技能与挑战的匹配度较高,学习目标相对明确具体,对外在评价的敏感度较低,任务专注力较弱。为提高高职生的学习沉浸度,要在挑战任务与学生能力之间寻找平衡,设置具有结构性特征的学习任务,培养学生的自向性人格,帮助学生提高对学习任务的专注。 Based on Csikszentmihalyi' s Flow Experience Theory and combined with four main learning approaches of undergraduates' learning, we compiled the learning flow experience scale for undergraduates, which consists of 8 factors including challenge-skill balance, clear goals, concentration on task at hand, sense of control, autotelic experience, loss of self-consciousness and transformation of time, fluency of thinking and self-assessment. By using this scale to investigate the learning flow experience of higher vocational college students, results showed that, compared with their undergraduate counterparts, they scored significantly better on the total score, challenge-skill balance and clear goals; further, they were less sensitive to the comments from others; the level of their concentration on task at hand was also lower than their counterparts. Hence, to enhance students' leaning flow experience, we as teachers have to balance the levels between task and students' ability, design tasks that are of specificity to students in higher vocational college, heighten students' awareness of being autotelic, and assist them to concentrate on tasks at hand.
出处 《职业技术教育》 北大核心 2017年第13期56-62,共7页 Vocational and Technical Education
基金 全国教育科学"十一五"规划国家一般课题"积极心理学取向的心理健康教育研究"(BBA070013) 主持人:杨莉萍
关键词 高职学生 学习沉浸体验 学习沉浸度量表 higher vocational college students learning flow experience learning flow experience scale
  • 相关文献

参考文献5

二级参考文献72

  • 1王艳梅,刘晓明,郭德俊,宋剑峰.成败情境下不同目标取向学生内在动机特点[J].心理科学,2006,29(1):103-106. 被引量:6
  • 2[1]Tucker L R, Lewis C. The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 1973, 38: 1~10
  • 3[2]Steiger J H, Lind J M. Statistically-based tests for the number of common factors. Paper presented at the Psychometrika Society Meeting, IowaCity, May, 1980
  • 4[3]Bentler P M, Bonett D G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88: 588~ 606
  • 5[4]Bentler P M. Comparative fit indices in structural models. Psychological Bulletin,1990, 107: 238~ 246
  • 6[5]McDonald R P, Marsh H W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 1990,107: 247~ 255
  • 7[6]Marsh H W, Balla J R, Hau K T. An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In: Marcoulides G A, Schumacker R E eds. Advanced structural equation modeling techniques. Hillsdale, NJ: Erlbaum, 1996. 315~ 353
  • 8[7]Browne M W, Cudeck R. Alternative ways of assessing model fit. In: Bollen K A, Long J S eds. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993. 136~ 162
  • 9[8]Joreskog K G, Srbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993
  • 10[9]Hu L, Bentler P M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 1998, 3: 424~ 453

共引文献1355

同被引文献94

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部