期刊文献+

几个积分不等式及其q模拟 被引量:4

Several Integral Inequalities and their q-Analogues
下载PDF
导出
摘要 通过建立定积分和q定积分的恒等式,给出推广的Hermite-Hadamard不等式的一个加细及其q模拟.分别在导函数有界和导函数满足M-李普希兹条件这两种情况下,建立了积分不等式.在q导数有界的情况下,建立了一个量子积分不等式. This paper derives integral identity and definite q-integral identity, and uses them to obtain a refinement of the generalized Hermite-Hadamard inequality and its q-analogue. Integral inequalities are established for the cases when derivative function is bounded or satisfies the M-Lipschitz condition. A quantum integral inequality is established for the case when q-derivative function is bounded.
出处 《广东第二师范学院学报》 2017年第3期36-41,共6页 Journal of Guangdong University of Education
关键词 q积分 Hermite-Hadamard型不等式 积分不等式 可微函数 q可微函数 q-integral Hermite-Hadamard type inequality integral inequality differentiable function q-differentiable function
  • 相关文献

参考文献3

二级参考文献19

  • 1刘玉琏 等.数学分析(上)[M].北京:高等教育出版社(第三版),1982.6.
  • 2冯慈璜.关于凸函数的Hadamard不等式.数学年刊:A辑,1985,6(4):443-446.
  • 3刘三阳,李广民.数学分析十讲[M].北京:科学出版社,2011:46.
  • 4Mitrinovid D S. Analytic inequalities[M]. New-York, Heidelerg, Berlin z Springer-Verlag , 1970.
  • 5Dragomir S S, Pearce C E M. Selected Topics on Hermite-Hadamard inequalities and applications [DB]. http://rgmia, vu. edu. au/SSDragomirweb, html.
  • 6Ernst T. A comprehensive treatment of q-calculus[M]. Basel z Birkhauser,2012.
  • 7Stankovi6 M S, Rajkovit P M, Marinkovi6 S D. Inequalities which includes q-integrals. Bull[J]. Aead. Serbe Sci. Arts, C1. Sci. Math. Natur., Sci. Math., 2006(31),137--146.
  • 8Gauchman H. Integral inequalities in q-calculus[J]. Comput. Math. Appl. , 2004(47) z281--300.
  • 9Marinkovic S, Rajkovi6 P, Stankovi6 M. The inequalities for some types of q-integrals l-J]. Computers and Mathematics With Applications, 2008(56) ~ 2490-- 2498.
  • 10Tariboon J, Ntouyas S K. Quantum calculus on finite intervals and applications to impulsive difference equations[J]. Advances in Difference Equations, 2013 .. 282.

共引文献48

同被引文献5

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部