期刊文献+

纳米多孔金属电催化剂在氧还原反应中的应用 被引量:4

Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions
下载PDF
导出
摘要 燃料电池是将化学能直接转化为电能的能量转换装置,具有绿色、高效、便携等特点。对于大多数使用氧气或者空气为氧化剂的燃料电池而言,其阴极氧还原反应动力学缓慢、稳定性差是阻碍该技术走向商业化的主要因素,因此开发高催化活性和良好稳定性的低成本氧还原催化剂非常重要。基于脱合金法制得的纳米多孔金属是一类新型的宏观尺度纳米结构材料,其独特的开放型孔道结构、优良的导电性和结构的可调控性使其在电催化相关领域具有广泛的应用。本文侧重于讨论纳米多孔金属作为氧还原催化剂时所展示的一系列结构特性,及其在发展新一代高性能一体化燃料电池催化剂中所展示的机会。 Fuel cells allow the direct conversion of the chemical energy in chemical fuels to electricity, with particular advantages of being highly effective, environment-friendly, and portable. For those fuel cells using oxygen or air as the oxidant, the oxygen reduction reaction (ORR) occurring on the cathode remains the major obstacle for the commercialization of fuel cell technologies because of its slow kinetics, which in turn results in relatively low catalytic efficiency and high price due to excessive use of precious metals like Pt. In recent years, dealloyed nanoporous metals have garnered widespread attention in the field of elec- trocatalysis due to their unique structural properties, such as three-dimensionally interconnected pore/ligament structure, excellent conductivity, and structural flexibility. This review summarizes the recent advances in nanoporous metal catalysts for ORR, with an emphasis on their unique structural properties for the development of new-generation high-performance fuel cell catalysts.
作者 翟萧 丁轶
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第7期1366-1378,共13页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51671145)资助项目~~
关键词 纳米多孔金属 脱合金 燃料电池 氧还原 低铂催化剂 Nanoporous metal Dealloying Fuel cell Oxygen reduction reaction Low Pt catalyst
  • 相关文献

参考文献3

二级参考文献68

  • 1Jalil, A. A.; Triwahyono, S.; Adam, S. H.; Rahim, N. D.; Aziz, M. A.; Hairom, N. H.; Razali, N. A.; Abidin, M. A.; Mohamadiah, M. K. J. Hazard. Mater. 2010, 181, 755. doi: 10.1016/j.jhazmat.2010.05.078.
  • 2Vimonsesa, V.; Lei, S.; Ji, B.; Chowd, C. W. K.; Saint, C. Chem. Eng. J. 2009, 148, 354. doi: 10.1016/j.cej.2008.09.009.
  • 3Asencios, Y. J. O.; Sun-Kou, M. R. Appl. Surf. Sci. 2012, 258, 10002. doi: 10.1016/j.apsusc.2012.06.063.
  • 4Cai, W. Q.; Yu, J. G.; Jaroniec, M. J. Mater. Chem. 2010, 20, 4587. doi: 10.1039/b924366f.
  • 5Xu, J. S.; Zhu, Y. J. J. Colloid Interface Sci. 2012, 385, 58. doi: 10.1016/j.jcis.2012.06.082.
  • 6Fei, J. B.; Cui, Y.; Zhao, J.; Gao, L.; Yang, Y.; Li, J. B. J. Mater. Chem. 2011, 21, 11742. doi: 10.1039/c1jm11950h.
  • 7Yu, C.; Dong, X.; Guo, L.; Li, J.; Qin, F.; Zhang, L. Z.; Shi, J.; Yan, D. J. Phys. Chem. C 2008, 112, 13378. doi: 10.1021/jp8044466.
  • 8Ai, L.; Zeng, Y.; Jiang, J. Chem. Eng. J. 2014, 235, 331. doi: 10.1016/j.cej.2013.09.046.
  • 9Hu, J.; Song, Z.; Chen, L.; Yang, H.; Li, J.; Richards, R. J. Chem. Eng. Data 2010, 55, 3742. doi: 10.1021/je100274e.
  • 10Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y. Eur. J. Inorg. Chem. 2010, 5, 3354.

共引文献22

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部