期刊文献+

基于电性拓扑状态指数的烷烃密度定量结构-性质关系研究

QSPR Study on the Density of Alkanes by Using Electrotopological State Index
下载PDF
导出
摘要 研究了烷烃密度的定量结构-性质关系。以电性拓扑状态指数为结构描述符,分别用多元线性回归(MLR)和人工神经网络(ANN)建立了结构描述符和密度之间的校正模型。用留一交叉验证和外部测试集验证评价所建立MLR和ANN模型的预测能力。对于MLR模型,这两种验证的均方根相对误差分别为3.37和1.92。对于ANN模型,这两种验证的均方根相对误差为1.06和1.34。这说明建立的MLR和ANN模型都可用于预测烷烃的密度,但ANN模型优于MLR模型。 The quantitative structure property relationship (QSPR) for the density of alkanes was investigated. Electrotopological state (ETS) index was used as the structural descriptor. The relationship between the ETS index and density was modeled with multivariate linear regression (MLR) and artificial neural network (ANN) respectively. Leave one out cross validation (Loo-CV) and external test set validation (EV) were conducted to assess the prediction performance of the developed models. For the MLR model, the root mean square relative error (RMSRE) of Loo-CV and EV is 3.37 and 1.92 respectively. For the ANN model, the RMSRE of Loo-CV and EV is 1.06 and 1,34 respectively. It is demonstrated that there is a quantitative relationship between the ETS index and density. Both MLR and ANN are practicable for modeling this relationship.
出处 《广东化工》 CAS 2017年第12期32-33,共2页 Guangdong Chemical Industry
基金 中国石油科技创新基金No.2015D-5006-0407 国家级大学生创新创业训练计划项目No.201510705216 陕西省青年科技新星计划项目2016KJXX-16 西安石油大学青年科研创新团队项目No.2013QNKYCXTD01
关键词 定量结构-性质关系 电性拓扑状态指数 烷烃 密度 QSPR electrotopological state index alkane density
  • 相关文献

参考文献6

二级参考文献53

  • 1吴启勋,胡树青.贝叶斯正则化神经网络预测金属晶体结合能的研究[J].计算机与应用化学,2004,21(4):604-608. 被引量:14
  • 2王克强.脂肪酯结构与折光指数之间定量关系的探讨[J].计算机与应用化学,1996,13(3):182-186. 被引量:12
  • 3王中英,王礼茂.中国经济增长对碳排放的影响分析[J].安全与环境学报,2006,6(5):88-91. 被引量:153
  • 4潘勇,蒋军成,王志荣.人工神经网络基团键贡献法预测烷烃闪点[J].化学工程,2007,35(4):38-41. 被引量:22
  • 5卢焕章.石油化工基础数据手册[M].北京:化学工业出版社,1984..
  • 6赵国良 靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1984.102-122.
  • 7YUAN Y N,ZHAMG R S, HU R J,et al. Prediction of CCR5 receptor binding affinity of substituted 1- (3, 3-diphenylpropyl)-piperidinyl amides and ureasbased on the heuristic method, support vector machine and projection pursuit regression[J]. European Journal of Medicinal Chemistry, 2009,44 : 25-34.
  • 8LIU H X,YAO X J,ZHANG R S, et al. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine[J]. Chemosphere, 2006,63 : 722-733.
  • 9MA W P, LUAN F, ZHANG H, et al. Quantitative structure-property relationships for pesticides in bio- partitioning micellar ehromatography[J]. J Chromatogr A,2006,1113:140-147.
  • 10XIA B B, MAW P, ZHANG Y, et al. Quantitative structure-retention relationships for organic pollu- tants in biopartitioning micellar chromatography[J]. Analytiea Chimica Aeta,2007,598 : 12-18.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部