期刊文献+

Mn_3O_4修饰石墨阳极MFC的产电性能与阳极电容特性

Electricity Production and Anode Capacitive Characteristics of Microbial Fuel Cell with Mn_3O_4-Coated Anode
下载PDF
导出
摘要 制备了Mn_3O_4修饰石墨阳极。在微生物燃料电池(MFC)中研究了Mn_3O_4对MFC产电性能及阳极电容特性的影响。Mn_3O_4修饰阳极的MFC最大功率密度为255mW/m2,比对照组提高了25%。Mn_3O_4修饰阳极的MFC比电容为14.7mF/cm2,比对照组提高了88%。在电化学阻抗(EIS)测试中,创建了R(Q(R(QR)))(QR)模型,对MFC内阻与电容的组成和大小进行了分析。测试表明,Mn_3O_4修饰电极降低了生物膜和电极界面的电荷转移内阻,增大了生物膜和电极界面的赝电容,从而提高了MFC的产电能力和间歇式放电MFC的能量利用率。 Mn3O4-coated electrodes were prepared. They were used as the anodes of the microbial fuel cells (MFC) to study the effect of Mn304 on electricity production and anode capacitive characteristics. The results showed that the maximum power density of the MFC with Mn304-coated anode was 255 mW/m2 , 25% higher than that of the bare anode. Cyclic voltammetry tests showed that the specific capacitance of Mn304-coated anode was 14. 7 mF/cm2 ,88% larger than that of the bare anode. The R(Q(R(QR))) (QR) model was created to analysis the formation and figure of internal resistance and capacitive in EIS test. Tests showed that Mn304-coated electrodes reduced the internal resistance of charge transfer and increased the pseudo capacitance between biofilm and electrode interface, and thus improved the power production capacity of MFC and the energy efficiency of batch mode MFC.
出处 《华东理工大学学报(自然科学版)》 CSCD 北大核心 2017年第3期363-368,共6页 Journal of East China University of Science and Technology
基金 中央高校基本科研业务费(22A201514061)
关键词 微生物燃料电池 MN3O4 产电性能 电容 microbial fuel c ell Mn3O4 electricity product ion capacitance
  • 相关文献

参考文献4

二级参考文献94

  • 1Cao X X,Huang X,Liang Ptet aL A New Method for Water Desalination Using Microbial Desalination Cells[ J]. EnvironSci Technol,2009:7148-7152.
  • 2Chen X,Xia X, Liang P,et al. Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency [J]. EnvironSci Technol,2011,45(6) :2465-2470.
  • 3Lu L, Xing D F, Liu b F,et aL Enhanced Hydrogen Production from Waste Activated Sludge by Cascade Utilization ofOrganic Matter in Microbial Electrolysis Cells[ J]. Water 7?es,2012,46(4) : 1015-1026.
  • 4Kim Y,Logan B E. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production[ J]. Environ SciTechrwl,20U,4S{n) :5834-5839.
  • 5Feng C H,Ma L,Li F byet aL A Polypyrrole/anthraquinone-2,6-disulphonic Disodium Salt(PPy/AQDS)-modified Anodeto Improve Performance of Microbial Fuel Cells [ J ] . Biosens Bioelectron,2010,25 ( 6 ) : 1516-1520.
  • 6Lowy D A,Tender L M,Zeikus J G,et al. Harvesting Energy from the Marine Sediment-water Interface: II. Kinetic Activityof Anode Materials [ J ]. Biosens Bioelectron, 2006,21(11) ; 2058-2063.
  • 7Rabaey K,Rodriguez J,Blackall L L, ef al. Microbial Ecology Meets Electrochemistry ; Electricity-driven and DrivingCommunities[ J] . Isme /,2007,1(1) :9-18.
  • 8Wang X,Cheng S A,Feng Y J,ef al. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods onPower Production in Microbial Fuel Cells[ J]. Environ Sci Technol, 2009,43( 17 ) :6870-6874.
  • 9Wang H M,Davidson M,Zuo Y,et al. Recycled Tire Crumb Rubber Anodes for Sustainable Power Production in MicrobialFuel Gells[ J]. J Power Sources,2011,196( 14) ;5863-5866.
  • 10Li J P, Gao H D A. Renewable Potentiometric Immunosensor Based on Fe3 04 Nanoparticles Immobilized Anti-IgG[ J].Electroanalysis,2008,20(8) :881 -887.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部