期刊文献+

多重对偶小波框架与波包框架的存在条件

Existence conditions of multiple dual wavelet frames and wave packet frames
下载PDF
导出
摘要 针对对偶小波框架具有双正交基的某些性质,采用傅立叶分析方法与时频分析方法,研究了多重Gabor框架与多重对偶小波框架之间的联系.给出由一对多重对偶Gabor框架转换为多重对偶小波框架的新方法.运用双线性泛函和局部可积函数,得出了多重波包紧框架存在的条件. Aimed at dual wavelet frames possessing some properties of bi-orthogonal wavelet bases,the relation of multiple Gabor frames to multiple dual wavelet frames is investigated by means of Fourier analysis and time-frequency analysis.A new method for conversion of a pair of multiple dual Gabor frames to multiple dual wavelet frames is presented.Existence conditions for multiple tight wave packet frames are obtained with bilinear functionals and locally integrable functions.
出处 《兰州理工大学学报》 CAS 北大核心 2017年第3期151-156,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61403298) 陕西省自然科学基金(2015JM1024)
关键词 多重对偶小波框架 BESSEL序列 多重Gabor框架 多重波包紧框架 multiple dual wavelet frames Bessel sequence multiple Gabor frames multiple tight wave packet frames
  • 相关文献

参考文献7

二级参考文献45

  • 1陈清江,程正兴,韩金仓.二元不可分双正交小波包的性质[J].兰州理工大学学报,2005,31(2):126-129. 被引量:7
  • 2陈清江,程正兴,杨守志.向量值正交小波包[J].应用数学,2005,18(4):505-511. 被引量:16
  • 3GAO Xieping,ZHOU Siwang.A study of orthogonal,balanced and symmetric multi-wavelets on the interval[J].Science in China(Series F),2005,48(6):761-781. 被引量:9
  • 4陈清江,张同琦,程正兴.一类矩阵值小波包的刻划[J].兰州理工大学学报,2006,32(2):143-146. 被引量:3
  • 5BENEDETTO J J, LI S. The theory of multiresolution analysis frames and applications to filter banks [J]. ApplComput Harm Anal, 1908,5,389-427.
  • 6LI S. A theory of generalized multiresolution structure and pseudoframes of translates [J]. Fourier Anal Appl, 2001, 7 (1):23-40.
  • 7LI S, OGAWA H. Pseudoframes for subspaces with applications [J]. Fourier Anal Appl, 2004,10(4): 409-431.
  • 8RUIZ M A, STOJANOFF D. Some properties of frames of subspaees obtained by operator theory methods [J]. J Math Anal Appl, 2008,343 (3): 366-378.
  • 9DAUBECHIES I,GROSSMANN A,MEYER Y. Painless nonorthogonal expansions [J]. Math Phys, 1986,27: 1271-1283.
  • 10CHUI C K, HE W, STOCKLER J, Nonstationary tight wavelet frames, I: Bounded intervals [J]. Appl Co-mput Harmon Anal, 2004,17 (2): 141-197.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部