摘要
当加细方程中伸缩因子为常正整数时,研究了由酉拓展原理构造的一类二维Parseval小波框架包的性质.运用时频分析方法,建立了二维基本小波框架包与对应的滤波器组的关系式.给出了二维基本小波框架包构成空间L^2(R^2)中Parseval小波框架的充分条件,进而,由二维Parseval小波框架包构造了空间L^2(R^2)直交分解子空间.
The properties of a class of two-dimensional Parseval wavelet-framed packets constructed with unitary expansion principle,is investigated as the dilation factor in the refinement equation is a fixed positive integer.The dependence of two-dimensional basic wavelet-framed packets on their corresponding filter bank is established by using time-frequency analysis method.A sufficient condition for availability of Parseval wavelet frame in two-dimensional basic wavelet-framed packets-constituted space L^2(R^2)and further,the orthogonal decomposition subspaces in space L^2(R^2)are constituted with the two-dimensional basic Parseval wavelet-framed packets.
出处
《兰州理工大学学报》
CAS
北大核心
2017年第3期157-162,共6页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(61403298)
陕西省自然科学基金(2015JM1024)
关键词
小波框架
小波框架包
滤波器组
框架生成元
扩张原理
wavelet frame
wavelet-framed packet
filter bank
frame egeneration unit
expansion principle