期刊文献+

阈值自适应的SIFT全景图像拼接算法 被引量:2

Adaptive Threshold SIFT Panorama Image Matching Algorithm
下载PDF
导出
摘要 针对SIFT(Scale Invariant Feature Transform)算法中阈值影响着图像匹配的成功率,提出了一种阈值自适应的匹配算法。该方法首先对SIFT算法中的阈值系统地研究,发现检测局部特征点的阈值α和图像匹配时最近距离与次近距离的比值的阈值β对图像是否能够成功匹配起着决定性的作用,然后利用控制α的大小来检测特征点,生成特征描述符。再利用广义紧互对原型的基础上,自动调整β的大小来控制匹配的对数,最后结合RANSAC和最小二乘法求出图像间的映射关系得到拼接后的图像。实验结果表明,该算法通过自动调整阈值和利用RANSAC剔除误匹配点,加快了图像的匹配速率,开发了全景图像拼接软件。 Aimed to the success rate of image matching which is affected by thresholds of the SIFT(Scale Invariant Feature Transform)algorithm, a thresholds of adaptive matching algorithm was proposed. Thresholds were first systematically investigated and found that the thresholds of local feature points( α)and the ratio of distances(closest/next closest)( β)had influence on successfully matching images. Then, controlled α was used to detect feature points and generate feature descriptors, and based on the generalized tight interaction of the prototype, automatically adjusted β to control matched pairs. Last, RANSAC and least-squares method derived mapping relations between images image stitching. Experiments show that the algorithm can automatically adjust the threshold so that accelerate the image matching rate, a panoramic image matching software have been developed.
作者 马无锡
出处 《浙江工贸职业技术学院学报》 2017年第2期35-40,共6页 Journal of Zhejiang Industry & Trade Vocational College
基金 2016年浙江工贸职业技术学院院级项目(G160108)
关键词 阈值自适应 SIFT 匹配速率 RANSAC 全景图拼接软件 adaptive threshold SIFT match rate RANSAC panorama matching software
  • 相关文献

参考文献6

二级参考文献45

  • 1李忠新,张登峰,茅耀斌,王执铨.基于相位相关法的柱面全景图拼接技术[J].南京理工大学学报,2002,26(S1):43-46. 被引量:4
  • 2张静,胡志萍,刘志泰,欧宗瑛.基于轮廓相位相关的图像自动拼接[J].大连理工大学学报,2005,45(1):68-74. 被引量:9
  • 3Hartley Richard, Zisserman Andrew. Multiple View Geometry in Computer Vision [M]. London: Cambridge University Press, 2000. 219-243.
  • 4Zhang Zhengyou. Determining the epipolar geometry and its uncertainty: A review [J]. International Journal Computer Vision, 1998, 27(2): 161-198.
  • 5Torr P H S, Murray D W. The development and comparison of robust methods for estimating the fundamental matrix [J]. International Journal Computer Vision, 1997, 24(3): 271-300.
  • 6Hartley R I. In defense of the 8-point algorithm [J].IEEE Trans Pattern Analysis and Machine Intelligence, 1997,19(6) :580-593.
  • 7Luong Q, Faugeras O. The fundamental matrix:Theory, algorithm, and stability analysis [J]. International Journal Computer Vision, 1996, 17 (1): 43-75.
  • 8Harris C, Stephens M. A combined corner and edge detector[C]. Proceedings Alvey Vision Conference,1988. 189- 192.
  • 9.牛津机器人组[EB/OL].http://www.robots.ox.ac.uk/-Vgg/data[EB/OL],.
  • 10Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection [M]. New York: John Wiley & Sons Inc. 1987.

共引文献49

同被引文献33

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部