期刊文献+

先驱体浸渍裂解法制备三维C/C-HfC复合材料及其烧蚀性能 被引量:5

Ablation behavior of a three-dimensional C/C-HfC composite prepared by a precursor infiltration and pyrolysis method
下载PDF
导出
摘要 通过化学气相渗透法和先驱体浸渍裂解法相结合制备出密度为1.95 g/cm^3的三维C/C-HfC复合材料,碳化铪陶瓷相均匀地填充于材料内部。探究了先驱体的物相转化过程和材料的耐烧蚀性能。结果表明:复合材料经等离子体烧蚀装置测试120 s后,样品的质量烧蚀率和线烧蚀率分别为:0.001 5 g/s和0.002 4 mm/s。通过先驱体浸渍裂解工艺引入到基体内的碳化铪陶瓷相在烧蚀过程中与氧化性气体生成的二氧化铪固体颗粒起既能起到一定的热障作用,也能作为抑制氧化性气体扩散的阻挡层,从而提高了材料的耐烧蚀性能。同时,氧化产物的生成和一氧化碳气体的挥发将消耗烧蚀区域内一部分热量,进而降低材料表面的温度,进一步提高材料的抗烧蚀能力。 A three-dimensional C/C-HfC composite with a density of 1.95 g/cm3 was fabricated by chemical vapor infiltration ofcarbon into a 3D woven carbon fiber felt to a density of 1.45 g/cm3 followed by vacuum impregnation and pyrolysis of a solution containing the HfC precursor. Results indicate that HfC particles are uniformly dispersed around the pyrocarbon. The 3D C/C-HfC composite exhibits a good ablation resistance at 2573 K. The mass and linear ablation rates after ablation for 120 s are 0. 001 5 g/s and 0. 002 4 mm/s,respectively. The resistance to ablation is attributed to the introduction of HfC into the C/C composite. The tree-coral-like HfO2 particles formed during the ablation act as thermal and oxygen diffusion barriers,protecting the composite from further ablation. Also, the oxidation of HfC and the volatilization of the ablation product ( CO) absorb a large amount of heat from the composite.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2017年第3期265-270,共6页 New Carbon Materials
基金 国家科技支撑计划(2013BAE04B02)~~
关键词 三维C/C-HfC复合材料 先驱体 耐烧蚀性能 Three-dimensional C/C-HfC composites Precursor Ablation properties
  • 相关文献

参考文献3

二级参考文献44

  • 1余煜玺,李效东,陈国明,曹峰,冯春祥.含铝碳化硅纤维耐高温性能[J].硅酸盐学报,2004,32(7):812-815. 被引量:5
  • 2尹健,张红波,熊翔,黄伯云.热解炭结构对C/C复合材料烧蚀性能的影响[J].材料研究学报,2007,21(1):10-14. 被引量:7
  • 3尹健,熊翔,张红波,黄伯云.3D C/C复合材料的电弧驻点烧蚀及机理分析[J].中南大学学报(自然科学版),2007,38(1):14-18. 被引量:9
  • 4Li C J, Crosky A. The effect of carbon fabric treatment on de-lamination of 2D-C/C composites [ J]. Compo Sci and Tech,2006,66; 2633-2638.
  • 5Li K Z, Shen XT,Li H J, et al. Ablation of the carbon/carboncomposite nozzle-throats in a small solid rocket motor [ J ]. Car-bon, 2011, 49(4) ; 1208-1215.
  • 6Squire T H, Marschall J. Material property requirements for a-nalysis and design of UHTC components in hypersonic applica-tions[J]. J Eue Ceram Soc, 2010,30(11) : 2239-2251.
  • 7Long Y, Javed Athar, Zhao Y, et al. Fiber/matrix interfacialshear strength of C/C composites with PyC-TaC-PyC and PyC-SiC-TaC-PyC multi-interlayers[ J]. Ceram Int, 2013, 39(6):6489-6496.
  • 8LiSP, LiKZ, UHJ, et al. Effect of HfC on the ablative andmechanical properties of C/C composites[ J]. Mat Sci Eng A,2009,517(1) : 61-67.
  • 9Shen XT,Li K Z,Li H J, et al. The effect of zirconium car-bide on ablation of carbon/carbon composites under an oxyacety-lene flame[J]. Corros Sci, 2011, 53(1); 105-112.
  • 10Li K Z, Xie J,Fu Q G,et al. Effects of porous C/C density onthe densification behavior and ablation property of C/C-ZrC-SiCcomposites[ J]. Carbon, 2013 , 57: 161-168.

共引文献32

同被引文献33

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部