期刊文献+

血管内生物可吸收支架现状与挑战 被引量:3

Progress and Challenges of Bioresorbable Vascular Scaffolds
下载PDF
导出
摘要 尽管目前介入用血管支架各类药物涂层技术较从前已经获得长足的进步,涂层支架的临床使用数量也远远超过裸支架,但远期疗效仍有待继续验证。无论何种药物涂层支架,当其被植入生物体内一段时间后,表面携带的功能药物涂层都会被生物体逐渐吸收而最终露出裸支架,带来晚期再狭窄及血栓的问题。因此,生物可吸收支架应运而生。由于其具有独特的可降解性,随着植入时间的延长而逐渐在生物体内被完全降解、吸收,最终代谢出体外;同时,血管自有的部分原始功能也得到一定恢复,如同从未被植入过支架一般。重点介绍国内外高分子聚合物、镁合金、纯铁、锌合金等几种不同材质的生物可吸收血管支架研究现状,并分析各材质可吸收支架现存的主要问题,希望对血管介入用生物可吸收支架的了解起到一定的作用。 Although drug-coating technologies have made stent achieve a great progress, and the application of drug-coating stents is more than that of non-drug coating stents in clinical application. However, the long-term efficacy still required further observation and verification. Regardless of what types of drug-coating stents, when the stent was implanted in the body for a long time, the drug coating would be gradually absorbed and the bare stent was exposed to the blood and the vein wall, therefore, the problems of the non-drug coating stents can not be completely solved. Bioresorbable stents are different from the non-degradable stents, they can be degraded when implanted in the human body. After a period of time, it is degraded completely and excreted. This paper not only described various bioresorbable stents, including polymer, magnesium alloy, pure iron, zn-alloy, but also analyzed existing problems, aiming to make a contribution to the development and application of bioresorbable stents.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第3期354-359,共6页 Chinese Journal of Biomedical Engineering
关键词 生物可吸收 血管支架 可降解材料 动脉硬化 再狭窄 bioresorption vascular scaffold biodegradable materials arteriosclerosis restenosis
  • 相关文献

参考文献1

二级参考文献107

  • 1Couch N, Wtlson R, Hager E, Murray J. Transplantatton of cadaver kidneys experience with 21 cases. Surgery, 1966, 59: 183-188.
  • 2Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920-926.
  • 3Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci, 2013, 38: 1263-1286.
  • 4Ma PX. Biomimetic materials for tissue engineering. Adv Drug Delivery Rev, 2008, 60: 184-198.
  • 5Liu XH, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci, 2012, 12: 911-919.
  • 6Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci, 2002, 2: 67-77.
  • 7Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng, 2001, 7: 679-689.
  • 8Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem, 2011, 21: 10243-10251.
  • 9Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci, 2007, 32: 762-798.
  • 10Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci, 2012, 37: 237-280.

共引文献18

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部