期刊文献+

AISAS模型下共青团引领社会主义核心价值观培育有效性研究

Effectiveness of Socialist Core Values Education by the Communist Youth League Based on AISAS Model
下载PDF
导出
摘要 大学生社会主义核心价值观培育过程与营销领域中AISAS模型产生的时代背景和内在机理十分相似,AISAS模型对大学生社会主义核心价值观培育环境的同质变革和思路演绎、培育理念的精准定位和有效提炼、培育环节的有效控制和精准把握等三个方面具有深刻的启发。高校共青团可以借鉴AISAS模型,从A、I、S、A、S五个方面分步引领大学生社会主义核心价值观培育,从而优化培育模型,提高思想政治引领的有效性和针对性。 The background and internal mechanism of the cultivation of socialist core values ot college students are similar to those in the AISAS model in the field of marketing. It is found that AISAS model has profound impacts on the cultivation of socialist core values of college students in three aspects: homogeneous transformation and thinking deduction of nurturing environment, precise positioning and effective extraction of cultivation concepts, effective control and accurate grasp of cultivation link. It is suggested that the Communist Youth League can learn from the model of AISAS to improve the education of socialist core values of college students from the five aspects of AISAS, so as to optimize the cultivation model, improve the effectiveness and pertinence of ideological political education.
出处 《中北大学学报(社会科学版)》 2017年第3期53-57,共5页 Journal of North University of China:Social Science Edition
基金 2016年度共青团中央学校部全国学校共青团课题研究资助项目:新媒体视阈下高校共青团引领社会主义核心价值观培育创新机制研究(2016ZD021) 2016年度山西省高等学校哲学社会科学研究资助项目(思想政治教育专项):新媒体转型背景下大学生社会主义核心价值观培育创新机制研究(2016ZSSZ011)
关键词 AISAS模型 社会主核心价值观 有效性 AISAS model socialist core values effectiveness
  • 相关文献

参考文献5

二级参考文献122

  • 1王海忠.中国消费者品牌知识结构图及其营销管理内涵[J].财经问题研究,2006(12):59-66. 被引量:26
  • 2张灵燕.电通重构消费者行为模式[J].现代广告,2007(2):92-93. 被引量:12
  • 3菲斯克,泰勒著,张庆林等译.《社会认知:人怎样认识自己和他人》,贵州人民出版社,1994年.
  • 4韩家炜,坎伯.数据挖掘概念与技术[M].第2版.范明,孟小峰译.北京:机械工业出版社,2007.
  • 5Agrawal, R., Imielinski,T., and Swami,A., 1993. Mining Association Rules between Sets of Items in Large Databases [ C ]. Washington D.C. : Proc of the ACM SIGMOD International Conference on Management of Data, 207-216.
  • 6Lent, B., Swami, A., and Widom, J., 1997. Clustering Association Rules [ C ]. Birmingham: Proc of the 13th International Conference on Data Engineering, 220-231.
  • 7Liu, B., Hsu, W., and Ma, Y., 1998. integrating Classification and Association Rule Mining[ C ]. New York : Proceedings of KDD-98,80-86.
  • 8Li, W., Han,J., and Pei J., 2001. CMAR:Accurate and Efficient Classification Based on Multiple Class-association Rules[ C ]. San Jose:Proceedings of 2001 IEEE Int Conf on Data Mining,369-376.
  • 9Yin, X. X., and Itan, J.W., 2003. CPAR: Classification Based on Predictive Association Rules [ C 1. San : Proceedings of the Francisco, CA, USA Third SIAM International Conference on Data Mining, 119-131.
  • 10Wang, K., Zhou, S.,and He, Y., 2000. Growing Decision Tree on Support-less Association Rules[ C ]. Boston : Proceedings of KDD-00,256-269.

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部