期刊文献+

时空数据挖掘中的模式探讨

Pattern Discussion on Spatio Temporal Data Mining
下载PDF
导出
摘要 随着数据的采集、存储、计算等能力不断提升,在数据挖掘领域,基于大数据的时空信息数据的分析和处理正是当前研究的热门问题。步入"互联网+"时代后,从巨大体量的时空大数据中挖掘出潜藏的有价值的信息具有重大意义。加之时空数据处理更为复杂,日趋繁重的时空数据处理任务急需寻找有效时空数据挖掘方法。据此,从数据挖掘中的时空数据挖掘模式的分析和展示角度出发,探讨时空数据挖掘的几种模式,包括时空频繁模式、时空关联模式、时空共现模式、时空分类、时空聚类、时空异常模式检测等,分析这些时空数据挖掘模式目前发展状况,对存在的问题及可能的解决办法进行探讨。 Nowadays, the ability of collecting, storing and computing data is rapidly improved. In the field of data mining, the analysis and processing of the spatio-temporal data based on large data is the hot research field. Into the "Internet + "era, from the huge volume of spatio-temporal data, dig out the hidden valuable information has a great significance. In addition, the spatio-temporal data processing is more complex. Increasingly heavy spatio-temporal data processing tasks are in urgent need of finding effective spatio-temporal data mining methods. Focuses on the spatio temporal data mining analysis and display mode, several models of spatio-temporal data mining, including spatio temporal frequent patterns, spatiabtemporal correlation model, spatio temporal patterns of co-occurrence, spatio-temporal classification, spatio temporal clustering, spatial temporal outlier pattern detection is mainly discussed, the current development status of the spati^temporal data mining model is analyzed, and existing problems and possible solutions are discussed.
作者 刘杰 张戬
出处 《现代测绘》 2017年第3期31-34,共4页 Modern Surveying and Mapping
基金 江苏省测绘地理信息科研项目资助(JSCHKY201622)
关键词 数据挖掘 时空大数据 挖掘模式 data mining spatio-temporal large data mining schema
  • 相关文献

参考文献3

二级参考文献173

  • 1张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 2Verhein F,Chawla S. Mining Spatio-temporal patterns in object mobility database[C]//Data Mining and Knowledge Discovery. Hingham, Kluwer Academic Publishers, 2008 : 5-38.
  • 3Shekhar S, Huang Y. Discovering spatial co-location patterns: a summary of results[C] // Lecture Notes in Computer Science. Berlin Heidelberg, Springer-Verlag, 2001 : 236-256.
  • 4Agrawl R, Srikant R. Fast algorithms for mining association rules[C]//Proceedings of the 20th VLDB Conference Santiago Chile, 1994.
  • 5HanJia-wei,KamberM数据挖掘概念与技术(第二版)[M].范明,孟小峰,译.北京:机械工业出版社,2006:148-151.
  • 6Gorawski M, J ureezek P. Using Apriori-like Algorithms for Spario-Temporal Pattern Queries[C]//Proceedings of the Intermational Multiconference on Computer Science and Information Technology. Poland, Polish Information Processing Society, 2009 : 43-48.
  • 7Fayyad U M, Piatetsky-Shapiro G, Smyth P. Knowledge discovery and data mining: towards a unifying framework [ C ]/! Proceedings of KDD-96 : International Conference on Knowledge Discovery and Data Mining. Portland, Oregon : AAAI Press, 1996:82-88.
  • 8Laxman S S, Sastry P S. A survey of temporal data mining [ J ]. Sadhana,2006,31 (2) :173-198.
  • 9Fu T C. A review on time series data mining[ J]. Engineering Applications of Artificial Intelligence,2011,24( 1 ) : 164-181.
  • 10Mennis J, Guo D. Spatial data mining and geographic knowledge discovery:an introduction [ J ]. Computers, Enviroment and Urban Systems,2009,33 ( 6 ) :403-408.

共引文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部