期刊文献+

分段时变参数CIR模型及其实证研究 被引量:1

CIR Model with Segmented Time-varying Parameters:An empirical study
原文传递
导出
摘要 经济环境总体是变化的,但在一定阶段会保持局部稳定.鉴于此,提出了分段时变参数CIR模型的构想,并用它来建模短期利率与汇率.给出了CIR模型设定检验的广义残差拟合优度检验法,用之来检验模型的时变性.用数值模拟和实证分析来验证分段时变参数CIR模型进行利率、汇率建模的可行性和合理性.数值模拟表明,两组符合CIR(Cox-Ingersoll-Ross)模型的数据合在一起不一定还符合CIR模型.通过对短期国库券利率和加拿大元与美元汇率数据的实证分析,发现用分段时变参数CIR模型来描述短期利(汇)率比一般的固定常数CIR模型更加合理. In general the economic environment is changing, but sometimes may keep local stability in a certain stage. In view of this, in the paper, we propose a concept of CIR model with time-varying parameters, and use it to model short-term interest rate and exchange rate. The generalized residual goodness of fit test of CIR model is given, which is used to test the time-varying characteristic of the model. Using numerical simulation and empirical analysis verify feasibility and rationality of CIR model with segmented time-varying parameters to describe interest and exchange rate modeling. Numerical simulation results show that if two groups of data which are in accordance with CIR(Cox-Ingersoll-Ross) model are combined together, and they may not conform to this model again. According to the data analysis for the weekly 6-month U.S. Treasury bill rate and the Canada / U.S. daily foreign exchange rates, we find that the CIR model with segmented time-varying parameters is more reasonable to describe the short-term interest(exchange) rate than the general constant coefficient CIR model.
出处 《数学的实践与认识》 北大核心 2017年第12期76-83,共8页 Mathematics in Practice and Theory
基金 江苏高校哲学社会科学基金资助项目"一类扩散模型统计推断及其在金融中的应用"(2016SJB910002) 国家自然科学基金(11271189 11201229)
关键词 分段时变参数CIR模型 时变性检验 数值模拟 实证分析 短期利(汇)率 CIR model with segmented time-varying parameters numerical simulation empirical analysis interest(exchange) rate
  • 相关文献

参考文献1

二级参考文献20

  • 1[1]Prakasa Rao B L S.Statistical Inference for Diffusion Type Processes.New York:Oxford University Press,1999
  • 2[2]Florens D.On estimating the diffusion coefficient from discrete observations.J Appl Probab,30:790-804(1993)
  • 3[3]Hoffmann M.Adaptive estimation in diffusion processes.Stochastic Process Appl,79:135-163 (1999)
  • 4[4]Jacod J.Non-parametric kernel estimation of the coefficient of a diffusion.J Scan Stat,27(1):83-98 (2000)
  • 5[5]Black F,Scholes M.The pricing of options and corporate liabilities.J Political Economy,81:637-654(1973)
  • 6[6]Cox J C,Ingersoll J E,Ross S R.A theory of the term structure of interest rates.Econometrica,53:385-467 (1985)
  • 7[7]Hull J,White A.Pricing interest-rate derivative securities.Review of Financial Studies,3:573-593 (1990)
  • 8[8]Longstaff F,Schwartz E.Interest-rate volatility and the term structure:A two-factor general equilibrium model.J Finance,1259-1282 (1992)
  • 9[9]Fan J,Jiang J C,Zhang C M,et al.Time-dependent diffusion models for term structure dynamics.Statistica Sinica,13:965-992 (2003)
  • 10[10]Ho T S Y,Lee S B.Term structure movements and pricing interest rate contingent claims.J Finance,41:1011-1029 (1986)

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部