摘要
讨论由Brownian运动和Lévy过程共同驱动的线性随机系统的随机LQ问题,其中代价泛函是关于Lévy过程生成的σ-代数取条件期望.得到由Lévy过程驱动的新的多维的倒向随机Riccati方程,利用Bellman拟线性原理和单调收敛方法证明了此随机Riccati方程的解的存在性.
In this paper, we investigate the stochastic linear-quadratic optimal control prob- lem for the linear stochastic system driven by both Brownian motions and Ldvy processes, where the cost functional takes conditional expectation with respect to the a-algebras gen- erated by Lévy processes. We obtain the new multidimensional backward stochastic Riccati differential equation driven by Lévy processes and prove the existence of solutions of this stochastic Riccati equation using Bellman's quasilinear principle and a method of monotone convergence.
出处
《数学的实践与认识》
北大核心
2017年第12期249-255,共7页
Mathematics in Practice and Theory
关键词
倒向随机黎卡提微分方程
有限时区
LÉVY过程
随机线性二次最优控制
backward stochastic Riccati differential equation
finite horizon
Lévy processes
stochastic linear-quadratic optimal control