期刊文献+

数字集的谱性与谱自仿测度

Spectrality of digit sets and spectral self-affine measures
原文传递
导出
摘要 本文主要确定与谱自仿测度μ_(M,D)相关的数字集D的谱性.研究所涉及的谱性问题与Dutkay、Han和Jorgensen的一个猜测密切相关.此猜测表明,在一维情形下,如果μ_(M,D)是谱自仿测度,则相应的数字集D总是一个谱集.对于一个自仿测度μ_(M,D),本文获得使数字集D具有谱性的一些条件,为这个猜测的成立提供了依据.另外,本文所得的结果在某些情形下也推广许多已知的相应结果. The present paper determines the spectrality of digit set D relating to a spectral self-affine measure PM, D. This is motivated by a conjecture of Dutkay, Han and Jorgensen. The conjecture states that D is always a spectral set if μM,D is a spectral measure in the dimension n = 1. For a self-affine measure μM,D, we obtain several conditions for the digit set D to be a spectral set. The result here provides some supportive evidence for the conjecture. It also generalizes the corresponding known result in a certain case. Keywords self-afflne measure, spectrality, compatible pair, digit set
作者 王琦 李建林
出处 《中国科学:数学》 CSCD 北大核心 2017年第6期703-712,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11571214) 中央高校基本科研业务费专项基金(批准号:GK201601004和2017CBY002)资助项目
关键词 自仿测度 谱性 和谐对 数字集 self-affine measure, spectrality, compatible pair, digit set
  • 相关文献

参考文献1

二级参考文献45

  • 1Fuglede B. Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16:101-121.
  • 2Jorgensen P E T. Spectral theory of finite volume domains in Rn. Adv Math, 1982, 44:105-120.
  • 3Pedersen S. Spectral theory of commuting self-adjoint partial differential operators. J Funct Anal, 1987, 73:122-134.
  • 4Jorgensen P E T, Pedersen S. Spectral pairs in Cartesian coordinates. J Fourier Anal Appl, 1999, 5:285-302.
  • 5Jorgensen P E T. Harmonic analysis on bounded regions in R^n. In: Analysis, geometry and groups: a Riemann legacy volume, Srivastava H M, Rassias T M, eds. Palm Harbor: Hadronic Press, 1993, 133-152.
  • 6Jorgensen P E T, Pedersen S. Harmonic analysis on tori. Acta Appl Math, 1987, 10:87-99.
  • 7Jorgensen P E T, Pedersen S. Spectral theory for Borel sets in R^n of finite measure. J Funct Anal, 1992, 107:72-104.
  • 8Jorgensen P E T, Pedersen S. Group theoretic and geometric properties of multivariable Fourier series. Expo Math, 1993, 11:309-329.
  • 9Pedersen S. The dual spectral set conjecture. Proc Amer Math Soc, 2004, 132:2095-2101.
  • 10Iosevich A, Pedersen S. Spectral and tiling properties of the unit cube. Internat Math Res Notices, 1998, 16:819-828.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部