期刊文献+

一类带有负指数的临界椭圆方程组的解

Solutions to a Critical Elliptic System Involving Negative Exponents
下载PDF
导出
摘要 研究了一类带有强耦合临界非线性项和负指数项的椭圆方程组.定义了几个重要的约束集,运用复杂的分析技巧研究了能量泛函在约束集的下确界,得到了一个临界常数的精确表达式,最后证明了一定条件下方程组正解的存在性,首次把单个临界椭圆方程的相关结果推广到了带有负指数项的临界椭圆方程组. In this paper, a system of elliptic equations was investigated, which involves strongly-coupled critical nonlinearities and negative-exponent terms.Several constraint sets were defined, the infimums of the energy functional on the constraint sets were studied by complicated analytical techniques, and the explicit expression of a critical constant was obtained.Finally, the existence of positive solutions to the system was verified under certain conditions, and for the first time, the related conclusions for the single critical elliptic equation were extended to the system of critical elliptic equations involving negative-exponent terms.
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2017年第2期143-147,154,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(11601530) 中南民族大学研究生科研创新项目(2017sycxjj083)
关键词 椭圆方程组 临界非线性项 负指数项 变分法 elliptic system critical nonlinearities negative-exponent term variational method
  • 相关文献

参考文献1

二级参考文献16

  • 1Cao D,Han P. Solutions to critical elliptic equations with multi-singular inverse square potentials [J]. J Differential Equations,2006,224(2):332-372.
  • 2Cao D,Peng S. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J]. J Differential Equations, 2004,193 (2) : 424- 434.
  • 3Ekeland I,Ghoussoub N. Selected new aspects of the calculus of variations in the large[J]. Bull Amer Math Soc, 2002,39 (1) : 207-265.
  • 4Felli V, Terracini S. Elliptic equations with multisingular inverse-square potentials and critical nonlinearity [ J ]. Comm Partial Differential Equations, 2006,31 (2) : 469-495.
  • 5Felli V, Terracini S. Nonlinear Schrodinger equations with symmetric multi-polar potentials [J]. Cale Var Partial Differential Equations ,2006,27(1) :25-58.
  • 6Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J Differential Equations, 2001, 177 (2): 494- 522.
  • 7Jannelli E. The role played by space dimension in elliptic critical problems [ J ]. J Differential Equations, 1999,156 (2) : 407-426.
  • 8Kang D, Peng S. The existence of positive solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Appl Math Letters, 2004, 17 (4) : 411-416.
  • 9Kang D, Peng S. Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Nonlinear Anal ,2004,56(4) : 1 151-1 164.
  • 10Kang D,Peng S. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents[J]. Israel J Math, 2004,143 (5) : 281-297.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部