摘要
对于一个图G,乘积度-基尔霍夫指标定义为R*(G)=∑{x,y}■V(G)dG(x)dG(y)rG(x,y).基于前人的一些研究成果,用类似于和的度-基尔霍夫指标应用在双圈图中的方法,把乘积度-基尔霍夫指标运用到双圈图中.首先给出了关于R*(G)的一些图变换,然后根据这些图变换,确定了恰好有两个圈的n阶双圈图的最小和最大的乘积度-基尔霍夫指标的值及其对应的极值图.度-基尔霍夫指标广泛应用于电流网络、化学、马尔可夫链和欧氏距离等各个方面.
For a graph G, the multiplicative degree-Kirchhoff index is defined as R*(G)=∑{x,y}V(G)dG(x)dG(y)rG(x,y).Based on the previous research results,similar to the additive degree-Kirchhoff index in the bicyclic graphs,the method of the same problem on the multiplicative degree-Kirchhoff index to the bicyclic graphs are discussed.First,some transformations on R*(G) are given,and then according to these transformations,the values of the minimum and maximum multiplicative degree-Kirchhoff index of bicyclic graphs with n-vertex having precisely two cycles are obtained and the corresponding extremal graphs are characterized.The degree-Kirchhoff index is widely used in the fields of electrical network,chemistry,Markov chain and Euclidean distance,and so on.
出处
《中南民族大学学报(自然科学版)》
CAS
北大核心
2017年第2期148-154,共7页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(61070197)
中南民族大学中央高校基本科研业务费专项资金资助项目(CZQ10007)
关键词
距离
乘积度-基尔霍夫指标
双圈图
distance
multiplicative degree-Kirchhoff index
bicyclic graphs