期刊文献+

基于压缩感知的声纳成像信息重建技术研究 被引量:2

Research for Sonar Image Information Reconstruction Based on Compressed Sensing
下载PDF
导出
摘要 人类对海洋的探索发现中,由于水下环境复杂使得水下声数据面临着高速采集、压缩和图像重构的问题。新兴的压缩感知理论提出,能用低采样率高概率地重构原始信号。论文研究了DCT和DWT两种变换基对声纳图像进行稀疏表示,并改进了一种在低采样率下重建稀疏图像的测量矩阵,通过仿真实验论证了该矩阵相对其他矩阵在低采样率下有效提升了重构图像质量,为利用少量数据重构水下图像提供了便利。 Humans are faced the problems with high-speed sampling,compressing and image reconstruction due to complex underwater environment in the process of the discovery for oceans. Recently the new theory of compressed sensing is proposed,in which the signal can be reconstructed in high-probability by a low sampling rate. This paper has researched the sparse representation for the sonar image by the conversion called DCT and DWT. It improves a measurement matrix when the sparse image can be reconstructed. Simulation results demonstrate that the matrix can obviously enhance the sparse image reconstruction quality against others,which provides convenience for the reconstruction by using less data.
出处 《舰船电子工程》 2017年第6期114-117,共4页 Ship Electronic Engineering
关键词 压缩感知 水下图像重构 测量矩阵 compressed sensing under image reconstruction measurement matrix
  • 相关文献

参考文献3

二级参考文献119

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献785

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部