期刊文献+

水下MEMS壁面剪应力传感器标定不确定度分析研究 被引量:3

Calibration and uncertainty analysis of MEMS wall shear stress sensor
下载PDF
导出
摘要 针对MEMS壁面剪应力传感器进行了标定及其不确定度分析工作。标定基于压力梯度法,使用扁平校验水槽作为主要的试验装置。测量不同壁面剪应力下的MEMS输出电压信号,通过最小二乘拟合可获得标定系数。反复进行壁面剪应力及电压测量,同时查找相关产品说明书获得壁面剪应力及标定系数的不确定度。试验结果表明,剪应力测量的相对扩展不确定度小于7%,且外流速度越大,剪应力测量的不确定度越小,因此扁平校验水槽能够提供较高精度的剪应力输入;电压测量的相对扩展不确定度小于7%,且外流速度越大,电压测量的不确定度越小,因此传感器能够可靠地用于流体壁面剪应力的测量;标定曲线具有合理的形态且拟合相关性较高,因此标定公式具有较好的可靠性。 In this paper, the calibration and uncertainty analysis of the MEMS shear stress sensor are undertaken. Shear stress is generated by the pressure gradient method, the main testequipment is the flat verification water channel. Different voltage outputs are measured ferent wall shear stress conditions, and the calibration coefficient can be got through matching the shear stress and voltage with the least square method. The shear stress uncertainty and caii- bration coefficient uncertainty can be got through measuring the pressure and voand checking the related product manual. As the resutt indicated,the uncertainty of the shear stress measurement is within 7 % , it tends to be smaller as the free-stream velocity gets higher. The uncertainty of the voltage measurement is within 7 % , and it also tends to be smaller as the free-stream velocity gets higher, so that the sensor can be used to wall shear stress mreliably. The shape of calibration curve is reasonable, its correlation coefficient of fitting is large enough,it means that the calibration equation is reliably.
出处 《实验流体力学》 CSCD 北大核心 2017年第3期66-71,共6页 Journal of Experiments in Fluid Mechanics
基金 国家重大科学仪器设备开发专项(2013YQ040911)
关键词 MEMS传感器 壁面剪应力 标定 压力梯度法 扁平水槽 TDV boundary layer parameters CFD underwater flat plate
  • 相关文献

参考文献3

二级参考文献30

  • 1郑志霞,冯勇建,张春权.ICP刻蚀技术研究[J].厦门大学学报(自然科学版),2004,43(B08):365-368. 被引量:35
  • 2吴望一.流体力学[M].北京:北京大学出版社,2004.
  • 3BREUER K. MEMS sensors for aerodynamic applications-the good, the bad (and the ugly) [C] // Proceedings of the 38th Aerospace Sciences Conference. Reno, Nevada, USA, 2000: 1- 10.
  • 4NAUGHTON J W, SHEPPI.AK M. Modern developments in shear-stress measurement . Progress in Aerospace Sciences, 2002, 38 (6): 515-571).
  • 5MA B, REN J, DENG J, et al. Flexible thermal sensor array on PI film substrate for underwater applications [C] // Pro ceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010: 679- 682.
  • 6SCHMIDT M A, HOWE R T, SENTURIA S D, et al. De- sign and calibration of a microfabricated floating-element shear- stress sensor [J]. IEEE Transactions on Electron Devices, 1988, 35 (6): 750-757.
  • 7SCOTT M. The need for a shear stress calibration standard [C] // Proceedings of the 24th AIAA Aerodynamic Measure- ment Technology and Ground Testing Conference. Portland, USA, 2004:1-9.
  • 8HYMAN D, PAN T, RESHOTKO E, et al. Microfabricated shear stress sensors, part 2: testing and calihration . AIAA Journal, 1999, 37 (1): 73-78.
  • 9SCHETZ J A. Direct measurement of skin friction in complex flows [C] // Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA, 2010: 1-28.
  • 10SCHEPLAK M, CATTAFESTA L, NISHIDA T, et al. MEMS shear stress sensors: promise and progress [C] // Proceedings of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Portland, USA, 2004:1 - 13.

共引文献6

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部