期刊文献+

面向移动通信大数据的云存储系统优化 被引量:4

Cloud storage system optimizations for telecom big data
下载PDF
导出
摘要 移动通信大数据对底层云存储系统提出了三大苛刻的需求:高性能、高可靠、低成本,但是通用云存储系统无法满足移动通信业务的现实需求。针对三大需求,提出对应的三项优化技术:面对高性能需求,提出一种小文件读写访问性能优化技术;面对高可靠需求,提出一种日志写入与回放优化技术;面对低成本需求,提出一种固态硬盘垃圾回收优化技术。相关测试表明,在典型的移动通信大数据应用场景中,相较于优化前,性能最多提升54%,平均提升27%~37%;可靠性处理效率最多提升67%,平均提升18%~22%;成本最多降低80%,平均降低26%~42%。 Three major requirements on the cloud storage system were put forward by telecom big data: high performance, high reliability and low cost, which universal cloud storage cannot meet. For high performance requirement, a small file reading and writing performance optimization technology was put forward. For high reliability requirement, a journal writing and synchronizing technology was put forward. For the requirement of low cost, a solid-state hard disk garbage collection optimization technique was put forward. Related tests show that in the typical telecom big data application scenarios,compared with the system before optimization, the performance increases up to 54% at an average of 27%-37%, the reliability increases up to 67%, at an average of 18%-22%, the cost decreases down to 80%, at an average of 26%-42%.
出处 《计算机应用》 CSCD 北大核心 2017年第A01期27-33,共7页 journal of Computer Applications
基金 国家科技重大专项(2013ZX03002004-003) 江苏省创新能力建设专项资金资助项目(BM2015008) 江苏省自然科学基金青年基金资助项目(BK20130876)
关键词 移动通信大数据 小文件优化 日志文件系统 垃圾回收 云存储 telecom big data small file optimization journaling file system garbage collection cloud storage system
  • 相关文献

参考文献3

二级参考文献32

  • 1冯幼乐,朱六璋.CEPH动态元数据管理方法分析与改进[J].电子技术(上海),2010(9):1-3. 被引量:6
  • 2熊劲,范志华,马捷,唐荣锋,李晖,孟丹.DCFS2的元数据一致性策略[J].计算机研究与发展,2005,42(6):1019-1027. 被引量:11
  • 3赵铁柱.分布式文件系统性能建模及应用研究:[PhDThe-sis ] [D].广州:华南理工大学,2011.
  • 4王珊,肖艳芹,刘大为,覃雄派.内存数据库关键技术研究[J].计算机应用,2007,27(10):2353-2357. 被引量:52
  • 5Sandberg R,Goldberg D,Kleiman S. Design and implementation of the Sun network filesystem[A].Berkeley,CA:USENIX Association,1985.119-130.
  • 6Shvachko K,Kuang H,Radia S. The Hadoop distributed file system[A].Piscataway,NJ:IEEE,2010.1-10.
  • 7White T. Hadoop:The Definitive Guide[M].Cambridge:O'Reilly Media,2009.
  • 8Ghemawat S,Gobioff H,Leung S. The Google file system[A].New York:ACM,2003.29-43.
  • 9Dean J,Ghemawat S. MapReduce:Simplified data processing on large clusters[A].Berkeley,CA:USENIX Association,2004.137-150.
  • 10Schmuck F,Haskin R. GPFS:A shared disk file system for large computing clusters[A].Berkeley,CA:USENIX Association,2002.231-244.

共引文献93

同被引文献32

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部