期刊文献+

强机动条件下的弹载深组合ARCKF滤波方法研究 被引量:1

Research on the Method of Missile-loaded Deeply-Integrated ARCKF Filtering under Strong Maneuver
下载PDF
导出
摘要 针对弹道导弹飞行中GNSS/SINS深组合导航系统呈现的强机动、非线性特性,引入了基于三阶球面-径向准则的容积卡尔曼(CKF)非线性滤波方法。同时,提出了一种自适应抗差容积卡尔曼滤波(ARCKF)算法,该算法运用抗差M思想,调节量测噪声阵,以抵御系统观测异常扰动,采用自适应因子对协方差阵进行调节,进一步处理动态扰动引入的误差。实验结果表明,该滤波算法有效提高了组合导航的动态性能,在加速度达到60g的强机动仿真环境中,仍能保持较高的导航精度和跟踪性能。 Aiming at the strong maneuvering and nonlinear characteristics of GNSS/SINS deeply integrated navigation system in ballistic missile flight, the cubature Kalman filter (CKF) based on third-degree spheri- cal-radial cubature rule is introduced in this paper. Meanwhile, an adaptive robust cubature Kalman filter (ARCKF) is proposed. The robustness M is used in this algorithm to adjust the measurement noise matrix to resist system disturbance, and the adaptive factor is used to adjust the covariance matrix to further deal with the error introduced by the dynamic disturbance. The experimental results show that the dynamic perform- ance of integrated navigation system can be effectively improved by using proposed algorithm, and high nav- igation precision and tracking performance can be maintained under the strong maneuver simulation envi- ronment with acceleration up to 60g.
作者 汪益平 陈帅 赵琛 屈新芬 Wang Yiping Chen Shuai Zhao Chen Qu Xinfen(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China Institute of Eleetronie Engineering, China Academy of Engineering Physics, Mianyang 621000, China)
出处 《航天控制》 CSCD 北大核心 2017年第3期3-8,共6页 Aerospace Control
基金 国家自然基金委员会和中国物理研究院联合基金资助(U1330133) 中央高校基本科研业务费专项资金资助(30916011336) 江苏博士后科研资助计划(1501050B) 中国博士后基金(2015M580434) 中国博士后特别资助(2016T90461)
关键词 弹道导弹 深组合 强机动 ARCKF Ballistic missile Deeply integrated Strong maneuvering ARCKF
  • 相关文献

参考文献7

二级参考文献94

共引文献262

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部