期刊文献+

基于大数据的区域教育质量分析与改进研究 被引量:69

Research on the Analysis and Improvement of Regional Education Quality Based on Big Data
下载PDF
导出
摘要 国家以招生考试制度改革为龙头的教育深化综合改革的核心方向是促进学生的全面发展与个性化成长,发现个性、培养个性,提高教育质量。教育大数据可以发现真正的学生个体特征,为学生提供个性化成长的支持,为破解规模化覆盖和个性化发展的难题提供了新的思路。北京师范大学未来教育高精尖创新中心研究了一套全面表征学习者特征的数据模型以及区域教育数据挖掘与分析模型,开发了一个促进学生个性发展的教育公共服务平台,形成了一套用大数据改进区域教育质量的解决方案,并在北京市的通州区成功开展了实践,取得了良好的效果。 In order to improve the quality of education, China is advocating the reform of entrance examination system, and the core orientation of the comprehensive reform of education is to promote the comprehensive development and individualized growth of students, to discover and cultivate individuality. The characteristics of individual student can be found through educational big data, which can provide supports for students" personalized development and provide a new way of thinking for solving the problem in the process of the development of personalized education. A data model which characterizes learners comprehensively and a model used for mining and analyzing regional education data have been developed by Beijing Advanced Innovation Center for Future Education. Moreover, a public educational service platform is established to support the development of students" personalities, and the big data-based solutions to improve the quality of regional education are formed too. Finally, in Tong Zhou district of Beijing, the practice in accordance with those reforms has been successfully carried out.
作者 余胜泉 李晓庆 YU Shengquan LI Xiaoqing(School of Educational Technology, Faculty of Education, BNU, Beijing 100875 Beijing Advanced Innovation Center for Future Education, BNU, Beijing 100875)
出处 《电化教育研究》 CSSCI 北大核心 2017年第7期5-12,共8页 E-education Research
基金 教育部哲学社会科学研究重大课题"‘互联网+’教育体系研究"(项目批准号:16JZD043)
关键词 大数据 互联网+教育 智能公共服务 区域教育质量改进 Big Data Internet + Education Intelligent Public Service Improvement of Regional Education Quality
  • 相关文献

参考文献8

二级参考文献104

  • 1翟博.教育均衡发展:理论、指标及测算方法[J].教育研究,2006,27(3):16-28. 被引量:313
  • 2杨永斌.数据挖掘技术在教育中的应用研究[J].计算机科学,2006,33(12):284-286. 被引量:58
  • 3约翰·杜威.我们怎样思维·经验与教育[M].北京:人民教育出版社,2005.203-210.
  • 4黄荷.今日谈:大数据时代降临[J].半月谈,2012,(17).
  • 5Siemens,GlstInternational Conferenceon Learning Analyticsand Knowledge 2011 [EB/OL].<https ://tekri.athabascau.ca/ analytics/about.〉.
  • 6Johnson,L.,Adams,S.,andCummins,M.(2012).TheNMCHorizon Report: 2012 Higher EducationEdition.Austin,Texas:TheNewMediaConsortium.
  • 7Baepler,P.& Murdoch, C. J.(2010). Academic Analytics andData Mining in Higher Education. International Journal forthe Scholarship of Teaching and Learning, 4(2). 170-178.
  • 8Chen.E.,Heritage,M.&Lee,J.Identifying and MonitoringStudents, Learning Needs With Technology[J].Journal of Education for Students Placed at Risk,2010(3):309-332.
  • 9Romero& Ventura. Educational Data Mining;A Survey from1995 to 2005[J]. Expert Systems with Applications.2007,(33):125-146.
  • 10Romero,C.,Ventura, S.,& Garcia, E. (2005). Data mining incourse management systems: Moodle case study and tutorial.Computers & Education.5 1(1),368-384.

共引文献1211

同被引文献516

引证文献69

二级引证文献1132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部