期刊文献+

A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures

A Simple Deposition Method for Self-Assembling Single Crystalline Hybrid Perovskite Nanostructures
下载PDF
导出
摘要 A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet. A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期117-120,共4页 中国物理快报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部