期刊文献+

High Strength, Ductility and Superplasticity Mg-6Zn-1Y-0.6Ce-0.6Zr Alloy Prepared by Rapid Solidification and Reciprocating Extrusion

High Strength, Ductility and Superplasticity Mg-6Zn-1Y-0.6Ce-0.6Zr Alloy Prepared by Rapid Solidification and Reciprocating Extrusion
下载PDF
导出
摘要 High strength, ductility, and superplasticity Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy was prepared by sequentially applying rapid solidification, extrusion, and reciprocating extrusion(REX). The microstructure of the alloy after 2-pass REX consisted of fine grains smaller than 0.7 μm and nanometer strengthening particles. The refined grains resulted from recrystallization during which the nanometer particles played an important role in restrain grain growth. The mechanical properties of the material were investigated at room and elevated temperatures. High tensile yield strength of 336 MPa and elongation of 27% were obtained at room temperature. At elevated temperatures, the highest elongation of 270% was obtained at 250 ℃ and an initial strain rate of 3.3×10^-3 s^-1, and LTS and HSRS were achieved. The high strength, ductility, and superplasticity were attributed to the refined unique microstructure. High strength, ductility, and superplasticity Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy was prepared by sequentially applying rapid solidification, extrusion, and reciprocating extrusion(REX). The microstructure of the alloy after 2-pass REX consisted of fine grains smaller than 0.7 μm and nanometer strengthening particles. The refined grains resulted from recrystallization during which the nanometer particles played an important role in restrain grain growth. The mechanical properties of the material were investigated at room and elevated temperatures. High tensile yield strength of 336 MPa and elongation of 27% were obtained at room temperature. At elevated temperatures, the highest elongation of 270% was obtained at 250 ℃ and an initial strain rate of 3.3×10^-3 s^-1, and LTS and HSRS were achieved. The high strength, ductility, and superplasticity were attributed to the refined unique microstructure.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期661-665,共5页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Natural Foundation of China(No.51571086) China Postdoctoral Science Foundation(No.2013M541973) The Research Fund for Doctoral Program of Henan Polytechnic University(No.B2015-14)
关键词 magnesium alloy rapid solidification reciprocating extrusion superplasticity magnesium alloy rapid solidification reciprocating extrusion superplasticity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部