期刊文献+

基于知识的污水生化处理过程智能优化方法 被引量:22

Knowledge-based Intelligent Optimal Control for Wastewater Biochemical Treatment Process
下载PDF
导出
摘要 针对污水处理过程控制能耗过大和水质超标严重等问题,本文提出一种基于知识的污水生化处理过程智能优化控制方法.该方法通过记忆多目标智能优化算法的动态处理信息,建立环境变量参数与最优解之间的知识模型.优化算法利用知识库中非支配解的引导,结合定向局部区域寻优以及随机全局寻优策略,提高了算法的收敛性,获取了更高质量的解.最后基于国际通用平台BSM1进行实验验证.结果表明,与其他优化算法相比,该方法能够在保证出水水质的前提下产生更少的能量消耗. In order to solve the problems of excessive energy consumption and serious water quality in wastewater treatment process, a wastewater treatment process intelligent optimization control method based on knowledge is proposed.Knowledge model of environment variable parameters and optimal solutions are built by memorizing the dynamic processing information of the multi-objective intelligent optimization algorithm. The optimization algorithm is guided by the non-dominated solution in the knowledge base, and combines the oriented local area search and the stochastic global search strategy to improve the convergence of the algorithm and obtains a higher quality solution. Finally, experiment verification is performed on the international common simulation platform BSM1. Results show that the proposed method can reduce energy consumption under the premise of ensuring the quality of the effluent.
出处 《自动化学报》 EI CSCD 北大核心 2017年第6期1038-1046,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61533002) 国家杰出青年科学基金项目(61225016)资助~~
关键词 污水处理过程 能耗 多目标优化 知识引导 Wastewater treatment process energy consumption multi-objective optimization knowledge guidance
  • 相关文献

参考文献2

二级参考文献13

  • 1严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 2Copp J.The cost simulation benchmark: Description and simulator manual[M].Luxembourg: Office for Publications of the European Community,2002: 3-4.
  • 3Piotrowski R,Brdys M A,Konarczak K,et al.Hierarchical dissolved oxygen control for activated sludge processes[J].Control Engineering Practice,2008,16(1): 114-131.
  • 4Beraud B,Steyer J P.Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms[J].Water Science & Technology,2007,56(9): 109-116.
  • 5Hopfield J,Tank D.Neural computation of decisions in optimization problems[J].Biological Cybernetics,1985,52: 141-152.
  • 6Walsh M,Malley M.Augmented Hopfield network for unit commitment and economic dispatch[J].IEEE Trans on Power Systems,1997,12(4): 1765-1774.
  • 7Dieu V,Ongsakul W.Enhanced augmented Lagrangian Hopfield network for unit commitment[J].IEEE Proc of Generation,Transmission and Distribution,2006,153(6): 624-632.
  • 8Ayesa E,Sota A,Grau P,et al.Supervisory control strategies for the new WWTP of Galindo-Bilbao: The long run from the conceptual design to the full-scale experimental validation[J].Water Science and Technology,2006,53(4/5): 193-201.
  • 9张平,苑明哲,王宏.前置反硝化污水生化处理过程优化控制[J].信息与控制,2008,37(1):113-118. 被引量:12
  • 10柴天佑,丁进良,王宏,苏春翌.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515. 被引量:89

共引文献98

同被引文献142

引证文献22

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部