期刊文献+

一类指数边界非局部扩散方程的爆破(英文) 被引量:1

Blow-up for a non-local diffusion equation with an exponential boundary flux
下载PDF
导出
摘要 主要研究一类带有指数边界流的非局部扩散方程的爆破问题{u_t(x,t) = ∫_ΩJ(x-y)(u(y,t)-u(x,t)) dy + ∫_(RN\Ω)J(x-y) e^(αu(y,t))dy u(x,0) = u_0(x) 证明了当α>0时,非负、非平凡解在有限时间内爆破,并且得到爆破速率估计为 -1/αlnα(T-t) ≤ Pu(·,t) ≤ P_(L∞)(Ω) ≤-1/αln C(T-t) A non -local diffusion equation with an exponential boundary flux is concerned, that is {u_t(x,t) = ∫_ΩJ(x-y)(u(y,t)-u(x,t)) dy + ∫_(RN/Ω)J(x-y) e^(αu(y,t))dy u(x,0) = u_0(x) Non - negative and non - trivial solutions will be proved blowing up in finite time ifa 〉 0 , and the blow - up rate is ob- tained -1/αlnα(T-t) ≤ Pu(·,t) ≤ P_(L∞)(Ω) ≤-1/αln C(T-t)
出处 《贵州师范大学学报(自然科学版)》 CAS 2017年第3期69-73,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(11301419) 四川省教育部门的科研基金(13ZA0010,14ZB0143) 西华师范大学自然科学基金(12B024)
关键词 非局部扩散 指数边界流 爆破 爆破速率 non - local diffusion exponential boundary flux blow - up blow - up rate
  • 相关文献

参考文献1

二级参考文献14

  • 1Bogoya M. A nonlocal nonlinear diffusion equation in higher space dimensions [J]. Math. Anal. Appl.,2008,344:601-615.
  • 2Bogoya M. Blowing up boundary conditions for a nonlocal nonlinear diffusion equation in several spacedimensions [J]. Nonlinear Anal., 2010,72:143-150.
  • 3Fife P. Some Nonclassical Trends in Parabolic-like Evolution, in: Trends in Nonlinear Analysis [M]. Berlin:Springer, 2003.
  • 4Cortazar C, Elgueta M, Rossi J D. A nonlocal diffusion equation whose solution develops a free boundary [J].Ann. Henri Poincare, 2005,6(2):269-281.
  • 5Ignat L, Liviu I, Rossi J D. A nonlocal convection-diffusion equation [J]. Funct. Anal., 2007,251:399-437.
  • 6Ignta L, Liviu I, Rossi J D, et al. Decay estimates for nonlinear nonlocal diffusion problems in the wholespace [J]. Journal d′Analyse Math′ematique, 2014,122:375-401.
  • 7Ignat L, Rossi J D, Antolin A S. Lower and upper bounds for the first eigenvalue of nonlocal diffusionproblems in the whole space [J]. Differential Equations, 2012,252:6429-6447.
  • 8Li Z P, Mu C L. Global existence and blow-up analysis for a nonlinear diffusion equation with innerabsorportion and boundary flux [J]. Dynamical Systems, 26(2):147-159.
  • 9Li Z P, Mu C L. Critical exponents and blow-up rate for a nonlinear diffusion equation with logarithmicboundary flux [J]. Nonlinear Anal., 2010,73:933-939.
  • 10Deng K, Levine H A, The role of critical exponents in blow-up theorems: the sequel [J]. Math. Anal. Appl.,2000,243:85-126.

共引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部