期刊文献+

蔗糖在气孔运动调节中的功能研究进展 被引量:5

Recent advances on the functions of sucrose in stomatal movement regulation
原文传递
导出
摘要 保卫细胞中渗透调节物质浓度的可逆变化调控着植物叶片表面气孔张开与关闭。虽然长期以来蔗糖被认为是保卫细胞中的一种渗透调节物质,但最近的研究表明蔗糖在保卫细胞中除了有渗透调节物质的功能外,还有一些其他方面的作用。本文围绕保卫细胞中蔗糖的合成、积累、降解以及蔗糖作为叶肉细胞和保卫细胞代谢之间的连接,主要介绍了蔗糖在保卫细胞中的各种调节作用。总结了保卫细胞一些与代谢有关高表达的基因,包括编码蔗糖和己糖转运体基因、糖异生化作用途径相关基因、蔗糖和海藻糖代谢基因以及一些C4代谢标记的基因。通过讨论分析保卫细胞中这些相关基因的可能功能以及蔗糖在气孔启闭中的作用,为进一步阐明保卫细胞碳代谢以及蔗糖在气孔运动中的调控作用提供基础。 Regulation of stomatal movement involves reversible changes in the concentration of osmolytes in guard cells. It is well known that sucrose has an osmolytic role in guard cells. However, except for osmolytic role, recent studies indicate that sucrose may possess other roles in guard cells. Here, we emphasized the various roles of sucrose in guard cell regulation, including the synthesis, accumulation, and degradation of sucrose, and summarized some genes encoding sucrose and hexose transporters and genes involved in sucrose and trehalose metabolism in guard cells. We analyzed the possible roles of these genes between guard cell function and stomatal movement, and provided further understanding of both guard cell metabolism and stomatal movement regulation.
出处 《植物生理学报》 CAS CSCD 北大核心 2017年第6期925-932,共8页 Plant Physiology Journal
基金 国家重点研发项目(2016YFD0300301-03) 大学生创新创业实验项目(2015821242和2015821269)~~
关键词 气孔运动 保卫细胞 碳代谢 蔗糖 stomatal movement guard cell carbon metabolism sucrose
  • 相关文献

参考文献4

二级参考文献68

  • 1Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15.
  • 2Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, E, Alabouvette, J., Marty, F., and Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J. Cell Biol. 133, 1251-1263.
  • 3Buchanan-Wollaston, V., et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation- induced senescence in Arabidopsis. Plant J. 42, 567-585.
  • 4Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998). Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23, 85-112.
  • 5Caspar, T., Huber, S.C., and Somerville, C. (1985). Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol. 79, 11-17.
  • 6Chen, M.H., Liu, L.F., Chen, Y.R., Wu, H.K., and Yu, S.M. (1994). Expression of s-amylases, carbohydrate metabolism, and autophagy in cultured rice ceils is coordinately regulated by sugar nutrient. Plant J. 6, 625-636.
  • 7Chia, T., Thorneycroft, D., Chapple, A., Messerli, G., Chen, J., Zeeman, S.C., Smith, S.M., and Smith, A.M. (2004). A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J. 37, 853-863.
  • 8Contento, A.L., Xiong, Y., and Bassham, D.C. (2005). Visualisation of autophagy in Arebidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42, 598-608.
  • 9Critchley, J.H., Zeeman, S.C., Takaha, T., Smith, A.M., and Smith, S.M. (2001). A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J. 26, 89-100.
  • 10Delatte, T., Trevisan, M., Parker, M.L., and Zeeman, S.C. (2005). Arabidopsis mutants Atisal and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J. 41,815-830.

共引文献33

同被引文献58

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部