期刊文献+

基于用户限制聚类的协同过滤推荐算法 被引量:4

Collaborative filtering recommendation algorithm based on user restriction clustering
下载PDF
导出
摘要 协同过滤推荐算法是个性化推荐系统的关键技术,但是其在计算过程中存在"数据稀疏性"和"冷启动"等问题,利用数据挖掘中的聚类技术,提出了一种基于用户限制聚类的协同过滤推荐算法。首先利用限制聚类技术将相似用户聚类到一起,在聚类的簇中找邻居用户,然后通过改进的协同过滤算法来进行推荐。实验结果表明,新算法改善了"数据稀疏性"和"冷启动"的问题,并且相比传统的协同过滤算法和基于K-means用户聚类协同过滤算法具有较高的推荐质量。 Collaborative filtering recommendation algorithm is the key technology of personalized recommender systems, but there exist some problems such as ' data sparseness' and ' cold start' in the calculation process. A collaborative filtering recommendation algorithm based on user restriction clustering is proposed by using the clustering technique in data mining. Firstly, the similar users are clustered together by the restriction clustering technique, and the neighbor users are found in the clustering. Then, the improved collaborative filtering algorithm is used to make recommendations. Experimental results show that the algorithm improves the situation of ' data sparseness' and ' cold start' , and has higher recommendation quality than the traditional collaborative filtering algorithm and the K-means user clustering collaborative filtering algorithm.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2017年第3期93-99,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61402241 61572260 61373017 61572261 61472192) 江苏省科技支撑计划(BE2015702) 江苏省普通高校研究生科研创新计划(CXLX12_0482) 南京邮电大学校级科研基金(NY217050)资助项目
关键词 数据挖掘 聚类算法 协同过滤 推荐算法 data mining clustering algorithm collaborative filtering recommendation algorithm
  • 相关文献

参考文献8

二级参考文献190

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献2363

同被引文献27

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部