期刊文献+

一种基于聚类划分的IoT实体搜索方法 被引量:1

Searching method for entity in Internet of Things based on clustering
下载PDF
导出
摘要 传统的互联网搜索引擎是对静态资源进行搜索,而物联网中的实体具有高度动态性,且资源数量远远超过互联网中的数量,因此在面对海量的、动态的物联网实体时,如何快速锁定目标实体,成为物联网搜索面临的一大挑战。针对以上问题,提出并实现了一种基于聚类划分的IoT实体搜索方法。通过对大量的物联网实体的分析,发现实体的种类远少于实体的数量,实体之间的属性有很强的相似性。利用实体之间的相似性,对实体进行聚类的划分,可以缩小搜索范围,有效地提高实时搜索的效率。 The traditional Internet search engine aiming at searching static resources does not apply to search Internet of Things(IoT) entity because of its highly dynamic and enormous resources. How to obtain the target entity quickly in massive and dynamic networking resources has become a major challenge in the IoT search. To solve above problems, this paper proposes and implements an IoT' s entity search method based on clustering. By the analysis of a large number of IoT,it can be found that the kind of entity are far less than the quantity, and a strong similarity between entities. With the similarity between entities,the clustering of entities can narrow down the scope and save the time of real-time search.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2017年第3期113-118,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省战略性新兴产业发展专项(2015ZS01)资助项目
关键词 物联网 实体 搜索 聚类 Internet of Things (IoT) entity search cluster
  • 相关文献

参考文献2

二级参考文献116

  • 1OSTERMAIER B, ELAHI B M, ROMER K, et al. Poster abstract: Dyser-towards a real-time search engine for the Web of things [ C ]// Proc of the 6th Conference on Embedded Networked Sensor Systems. [ S. l. ] : ACM Press,2008:429-430.
  • 2ELAHI B M, ROMER K, OSTERMAIER B, et al. Sensor ranking: a primitive for efficient content-based sensor search [ C ]//Proc of the Sth ACM/IEEE International Conference on Information Processing in Sensor Networks. [S. l. ] : ACM Press,2009:217-228.
  • 3FOO S,LI Hui. Chinese word segmentation and its effect on informa- tion retrieval [ J ]. Information Processing and Management, 2004,40( 1 ) : 161-191.
  • 4Bicing [ EB/OL ]. ( 2010- 09- 22 ) [ 2010- 09- 22 ]. http ://www. bi- cing. com.
  • 5ROMER K, OSTERMAIER B, MATTERN F, et al. Real-time search for real-world entities: a survey [ J ]. Proceedings of the IEEE, 2010,98( 11 ) :1887-1902.
  • 6BRIN S, PAGE L. The anatomy of a large-scale hypertextual Web search engine[C]//Proc of the 7th International World Wide Web Conference. [ S.l. ] : Elsevier Science Publisher B. V. , 1998 : 107- 117.
  • 7DING C H, BUYYA R. Guided Google:a meta search engine and its implementation using the Google distributed Web services [ J ]. Inter- national Journal of Computer and Application, 2004,26(3) : 1454- 1465.
  • 8INMON B. Structured and unstructured data [ EB/OL ]. (2007- 06- 21 ) [ 2010-10-12 ]. http ://www. b-eye-network. com/view/4955.
  • 9TAN C C, SHENG Bo, WANG Hao-dong, et al. Microsearch-when search engines meet small devices [ C]//Proc of the 6th International Conference on Pervasive Computing. [ S. l. ] : Springer,2008:93-110.
  • 10WANG Hao-dong, TAN C C, LI Qun. Snoogle : a search engine for per- vasive environments[ J]. IEEE Trans on Parallel and Distributed Systems ,2010,21 ( 8 ) : 1188-1202.

共引文献33

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部