期刊文献+

数值积分的回溯搜索优化算法 被引量:2

Backtracking Search Optimization Algorithm for Numerical Integration
下载PDF
导出
摘要 针对数值积分问题,提出了基于回溯搜索优化算法(Backtracking Search Optimization Algorithm,BSA)不等距节点分割的数值积分方法。该方法将不等距节点的定位看作是一个优化问题,用回溯搜索优化算法寻找最优分割节点,然后在分割而成的每个小区间上应用辛普森公式计算函数的数值积分。与同类算法的对比实验表明,该方法在收敛速度和积分精度上都表现出较强的竞争力。 To solve numerical integration problems, this paper proposes the non-isometric point segmentation numerical integration method based on backtracking search optimization algorithm (BSA), in which the determination of the non-isometric nodes is considered as an optimization problem. In this method, BSA is used to find the optimal segmentation nodes on the integral interval of a function. In each sub-interval of the integral interval, Simpson formula is then employed to calculate numerical integral of the function. The comparative experiments with similar algorithms indicated that the proposed method shows strong competitiveness in terms of convergence speed and integral precision, in both convergence speed and integral precision show strong competitiveness.
出处 《湖北工程学院学报》 2017年第3期38-42,共5页 Journal of Hubei Engineering University
基金 国家自然科学基金项目(61663009) 湖北省教育厅重点科研项目(D20161306)
关键词 回溯搜索优化算法 数值积分 不等距点分割 辛普森公式 backtracking search optimization algorithm numerical integration non-isometric point segmentation Simpson formula
  • 相关文献

参考文献4

二级参考文献40

  • 1彭宏,杨立洪,郑咸义,雷秀仁.计算工程优化问题的进化策略[J].华南理工大学学报(自然科学版),1997,25(12):17-21. 被引量:13
  • 2王湘中,喻寿益.适用于高维优化问题的改进进化策略[J].控制理论与应用,2006,23(1):148-151. 被引量:18
  • 3罗玉雄,文卉.一种基于神经网络算法的数值积分方法[J].传感技术学报,2006,19(4):1187-1189. 被引量:8
  • 4高尚,孙玲芳.求最平坦的三次样条插值的粒子群优化算法[J].微电子学与计算机,2007,24(6):201-203. 被引量:6
  • 5刘玉琏 傅沛仁.数学分析讲义[M].北京:高等教育出版社,1992.256-257.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [J]. Institute of Electrical and Electronics Engineers, 1995(11):1942 - 1948.
  • 7Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[J]. Institute of Electrical and Electronics Engineers, 1995 (10) :39 - 43.
  • 8Fabrice Rouillier, Paul Zimmermarm. Efficient isolation of polynomial's real roots[J]. Journal of Computational and Applied Mathematics, 2004(162) : 33 - 50.
  • 9Price K. Differential Evolution: A Fast and Simple Numerical Optimizer[C]//Proc. of NAFIPS’96. New York, USA: [s. n.], 1996: 524-527.
  • 10Rainer S, Price K. Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.

共引文献34

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部