期刊文献+

一类改进的手足口病模型的稳定性分析

Stability Analysis of a Improved Hand-foot-and-mouth Disease Model
下载PDF
导出
摘要 建立了一个改进的SEIQRS模型,在引入基本再生数R_0后,利用构造适当的Lyapunov函数的方法,讨论了平衡点的稳定性.这一研究成果主要体现在:得到HFMD动力系统的全局稳定性由它的基本再生数R_0决定,当R_0<1时,该动力系统的无病平衡点是全局渐进稳定的,意味着该HFMD会在一定时期后消亡;当R_0>1时,该动力系统至少有一个正的周期解,即该HFMD会演变成为一种流行性的疾病. In this paper,it established a SEIQRS model, after the introduction of the basic reproductive number R0 , by using the method of constructing suitable Lyapunov function, the stability of the equilibrium point is discussed. The results of the study are mainly reflected in: the stability of the HFMD system is determined by the basic reproductive number R0, as Ro 〈 I, the disease - free equilibrium of the dynamic system is globally asymptotically stable,the HFMD will die after a period of time. When Ro 〉 1 ,the system has a positive equilibrium,the HFMD will evolve into a kind of epidemic disease.
作者 庞丽艳
出处 《宁夏师范学院学报》 2017年第3期12-17,共6页 Journal of Ningxia Normal University
基金 宁夏自然科学基金项目项目(NZ15255) 宁夏高等学校科研项目(NJY2016170) 宁夏师范学院科研项目
关键词 手足口病(HFMD) LYAPUNOV函数 稳定性分析 Hand-foot-and-mouth disease Lvaounov function Stabilitv analvsis
  • 相关文献

参考文献3

二级参考文献12

  • 1杨智宏,朱启镕,李秀珠,王晓红,王建设,胡家瑜,唐伟,崔爱利.2002年上海儿童手足口病病例中肠道病毒71型和柯萨奇病毒A组16型的调查[J].中华儿科杂志,2005,43(9):648-652. 被引量:636
  • 2Wong KT.Emerging and re-emerging epidemic encephalitis:a tale of two viruses[J].Neuropathol Appl Neurobiol,2000,26 (4):313-318.
  • 3Kao SJ,Yang FL,Hsu YH,et al.Mechanism of fulminant pulmonary edema caused by enterovirus 71[J].Clin Infect Dis,2004,38 (12):1784-1788.
  • 4[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 5[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 6[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 7[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 8[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 9[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 10[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部