摘要
The hot deformation behavior of powder met- allurgical (PM) TiAI alloys was investigated on Gleeble- 3500 thermomechanical simulator, at a temperature range of 1050-1200 ℃ with an interval of 50℃ and a strain rate range of 0.001-1.000 s-1. The results show that the flow stress of PM TiAI alloy is sensitive to deformation tem- perature and strain rate, the peak stress decreases with the increase in deformation temperature and decrease in strain rate, and dynamic recrystallization occurs during the hot compression. The deformation active energy was calcu- lated and the flow stress model during high-temperature deformation was established based on the Arrhenius equations and Zener-Hollomon parameter. The deformed microstructure consists of refined homogeneous γ and α2/γ grains.
The hot deformation behavior of powder met- allurgical (PM) TiAI alloys was investigated on Gleeble- 3500 thermomechanical simulator, at a temperature range of 1050-1200 ℃ with an interval of 50℃ and a strain rate range of 0.001-1.000 s-1. The results show that the flow stress of PM TiAI alloy is sensitive to deformation tem- perature and strain rate, the peak stress decreases with the increase in deformation temperature and decrease in strain rate, and dynamic recrystallization occurs during the hot compression. The deformation active energy was calcu- lated and the flow stress model during high-temperature deformation was established based on the Arrhenius equations and Zener-Hollomon parameter. The deformed microstructure consists of refined homogeneous γ and α2/γ grains.
基金
supported by the National Natural Science Foundation of China (Nos. 51301157 and 51105102)
the National High Technology Research and Development Program (No. 2013AA031103)