期刊文献+

基于传递推理的迁移学习

Transfer Learning Based on Transitive Inference
下载PDF
导出
摘要 迁移学习是一种新的机器学习方法,它的目标是把从源领域学到的知识迁移到目标领域,但是迁移学习的一个主要局限是迁移知识的目标领域需要和源领域要有直接的关联,否则无法在这两个领域中实现知识迁移.介绍了一种基于传递推理的迁移学习方法,它借助发挥桥梁作用的中间区域实现从源领域到目标领域的迁移学习.该方法能在源领域与目标领域之间仅有少量相关性的情况下实现知识迁移,扩大了迁移学习的应用范围. Transfer learning is a new machine learning method which aims to use knowledge from source domain to help the learning in a target domain. A major limitation of transfer learning is that the source and target domains should be directly related, otherwise knowledge transfer between them will not work. A transfer learning method based on transitive inference is introduced. This method finds an appropriate domain to bridge the given souroe and target domain, and transfers knowledge among all domains effectively. This method can transfer knowledge when the source and target domain share few relations, and expands the scope of applications of transfer learning.
作者 陈凤娟 CHEN Feng-juan(Department of Basic Courses, Liaoning University of International Business and Economics, Dalian, Liaoning 116052, China)
出处 《沧州师范学院学报》 2017年第2期66-68,117,共4页 Journal of Cangzhou Normal University
关键词 迁移学习 源领域 目标领域 传递推理 transfer learning source domain target domain transitive inference
  • 相关文献

参考文献4

二级参考文献150

  • 1王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 2Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 3Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 6Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 7Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 8Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 9Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 10Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].

共引文献495

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部