期刊文献+

人体行为特征融合与行为识别的分析 被引量:2

Analysis of human behavior characteristic fusion and behavior recognition
下载PDF
导出
摘要 伴随着信息技术的快速发展,人体行为识别技术逐渐被引入到各领域中,如安防监控、运动分析、医学辅助诊断和智能人机交互等,而技术实现的关键在于借助相关的特征融合方法。文章对人体行为识别的相关技术以及兴趣点提取方法、尺度混合特征模型与MKL方法的应用进行分析,以期对人体行为识别技术的发展起到推动作用。 With the rapid development of information technology, human behavior recognition technology has been gradually introduced into various fields, such as security monitoring, motion analysis, medical assistant diagnosis and intelligent human-computer interaction, and the key to technology realization is to use the corresponding feature fusion method. This paper analyzed the related technology of human behavior recognition and the method of interest point extraction, scale mixed feature model and application of MKL, with a view to promot the development of human behavior recognition technology.
作者 赵雄伟
机构地区 贵州大学
出处 《无线互联科技》 2017年第12期104-105,共2页 Wireless Internet Technology
关键词 人体行为识别 特征融合 兴趣点提取 多核学习 human behavior recognition feature fusion interest point extraction multiple kernel learning
  • 相关文献

参考文献2

二级参考文献29

  • 1Feng Z,Yang B, Li Y, et al. Real-time oriented behavior- driven 3D freehand tracking for direct interaction[J]. Pat- tern Recognition, 2013,46(2) : 590-608.
  • 2Poppe R. A survey on vision-based human action recogni- tion[J]. Image and vision computing, 20]0,28 (6) : 976- 990.
  • 3Gorelick L,Blank M,Shechtman E,et al. Actions as spac- e-time shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29( 12 ) : 2247-2253.
  • 4Niebles J C,Wang H, Fei-Fei L. Unsupervised learning of human action categories using spatial-temporal words [J]. International Journal of Computer Vision, 2008,79 (3) :299-318.
  • 5Derpanis K G, Sizintsev M, Cannons K J, et al. Action spotting and recognition based on a spatiotemporal orien- tation analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(3) :527-540.
  • 6Zhou H, Wang L, Suter D. Human action recognition by feature-reduced Gaussian process classification[J]. Pat- tern Recognition Letters,2009,30(12):1059-1066,.
  • 7Babu R V, Ramakrishnan K R. Recognition of human ac-tions using motion history information extracted from the compressed video [J]. Image and Vision Computing, 2004,22(8) :597-607.
  • 8Yogameena B,Lakshmi S V, Archana M, et al. Human be havior classification using multi-class relevance vectoI machine[J]. Journal of Computer Science, 2010,6 (9) : 1021-1026.
  • 9He W, Yow K C, Guo Y. Recognition of human activities using a multiclass relevance vector machine[J]. Optical Engineering, 2012,51 (1) :017202;1-12.
  • 10Fukushima, K. Extraction of visual motion and optic flow [J]. Neural Networks, 2008,21(5) : 774-785.

共引文献21

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部