期刊文献+

基于用户量化属性的多维相似度的协同过滤推荐算法 被引量:6

Collaborative filtering recommendation algorithm based on multi-similarity of user quantitative attributes
下载PDF
导出
摘要 针对传统协同过滤推荐算法模型过于粗糙和推荐精度较低的问题,提出了一种新的基于用户量化属性的多维相似度的协同过滤推荐算法.该算法考虑到个别项目对相似度计算的影响,利用最大差值特性进一步描述用户评分相似度,并结合用户量化属性,构建用户兴趣偏好模型,依此阐明了新的相似度计算方法,利用该方法获取目标用户的近邻用户和预测评分,最终实施推荐.实验结果表明该算法可以有效的提高推荐质量. Considering the fact that the traditional collaborative filtering recommendation algorithm is rough and has low recommendation accuracy, a new recommendation algorithm is proposed based on multi-similarity of user quantitative attributes. Taking the impact of individual items into account, the algorithm describes the user rating similarity by using the maximum difference feature, and combines the user quantitative attributes to build the user interest preference model, thus the new similarity calculation method is elaborated. The neighbor user of the target user and the prediction score are obtained by the method, which contributes to the effective recommendations. The results show that the proposed algorithm can effectively enhance the quality of recommendations.
出处 《江西理工大学学报》 CAS 2017年第3期86-91,共6页 Journal of Jiangxi University of Science and Technology
基金 江西省社科规划项目(13YD020)
关键词 推荐算法 协同过滤推荐 最大差值 量化属性 近邻用户 recommendation algorithms collaborative filtering maximum difference quantitative attribute neighbor user
  • 相关文献

参考文献8

二级参考文献106

  • 1罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3李峰,李芳.中文词语语义相似度计算——基于《知网》2000[J].中文信息学报,2007,21(3):99-105. 被引量:106
  • 4吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 5Herlocker J L,Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering [ C]// SIGIR 99:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Re- trieval. 1999 : 230-237.
  • 6Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C] // Pro- ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. 1994:175-186.
  • 7Adomavieius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: a Survey of the State-of-the-art and Possible Extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (6) : 734-749.
  • 8Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International World Wide Web Conference. New York, 2001 : 285-295.
  • 9Breese J, Hecherman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 98). 1998:43-52.
  • 10Wang J, Vries A, Reinders M. Unifying User-based and Item- based Collaborative Filtering Approaches by Similarity Fusion [C]//SIGIR 06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2006 :501-508.

共引文献426

同被引文献58

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部