期刊文献+

基于机器视觉的瓷砖素坯表面缺陷无损检测算法研究 被引量:10

Nondestructive detection algorithm research of the surface defects of ceramic tile billet based on machine vision
下载PDF
导出
摘要 针对瓷砖生产中对瓷砖素坯表面缺陷检测的高速度和高准确率的要求,本文提出了基于机器视觉的表面缺陷无损检测算法。首先对采集到的瓷砖素坯图像采用双边滤波器进行图像预处理,降低噪声,提高图像质量,然后利用Canny边缘算子提取图像边缘,在图像边缘的基础上,采用最佳阈值分割算法,实现图像分割,利用圆形度对缺陷特征进行描述,并实现缺陷判别,最后,通过实验验证表面缺陷检测的准确度和稳定性。实验结果表明,该方法可以实现瓷砖素坯表面缺陷的无损检测,准确率达到95%以上,能应用于瓷砖表面缺陷质量检测的生产实践中。 Aiming at the high speed and high accuracy requirements of the surface defects of ceramic tile billet,the paper presents nondestructive detection algorithms of surface defects based on machine vision. Firstly,in order to reduce noise and improve image quality,the image of ceramic tile billet is processed by bilateral filter. Then,image edge is extracted by Canny edge operator and image segmentation is realized by optimal threshold segmentation algorithm based on image edge.Next,defect characteristics are described and identified by degree of circularity. Finally,the accuracy and stability of the surface defect detection is verified through the experiment. The experimental results show that,nondestructive detection of the surface defects of ceramic tile billet is realized by the method and the detection accuracy in the experiments is over 95%.It can be applied to production of ceramic tiles on quality detection of the surface defects of the ceramic tiles.
出处 《智能计算机与应用》 2017年第3期37-40,共4页 Intelligent Computer and Applications
基金 佛山市工业产品精密检测科研基础平台项目(2013AG10010) 2016年佛山职业技术学院科研课题项目(KY2016Z02)
关键词 机器视觉 表面缺陷 双边滤波器 Canny边缘算子 最佳阈值分割 machine vision surface defect bilateral filter Canny edge operator optimal threshold segmentation algorithm
  • 相关文献

参考文献3

二级参考文献29

  • 1杨道普,马秋禾,石磊.边缘检测Prewitt算子的改进算法[J].测绘科学,2008,33(S1):100-101. 被引量:12
  • 2郑立国,罗江林,许舸.基于Kinect的动作捕捉系统的实现[J].吉林大学学报(工学版),2013,43(S1):249-255. 被引量:22
  • 3张朝阳,冯伍法,张俊华.基于色差的遥感影像海岸线提取[J].测绘学院学报,2005,22(4):259-262. 被引量:34
  • 4王康泰,戴文战.一种基于Sobel算子和灰色关联度的图像边缘检测方法[J].计算机应用,2006,26(5):1035-1036. 被引量:42
  • 5DARIBO I,TILLIER C,PESQUET-POPESCU B.Distance dependent depth filtering in 3D warping for 3DTV [C]// MMSP 2007:Proceedings of IEEE 9th Workshop on Multimedia Signal Processing.Piscataway:IEEE Press,2007:312-315.
  • 6EDELER T,OHLIGER K,HUSSMANN S,et al.Time-of-flight depth image denoising using prior noise information [C]// ICSP2010:Proceedings of IEEE 10th International Conference on Signal Processing.Piscataway:IEEE Press,2010:119-122.
  • 7NEWCOMBE R,HILLIGES O,KIM D,et al.Kinect fusion:real-time dense surface mapping and tracking [C]// Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality.Piscataway:IEEE Press,2011:127-136.
  • 8IZADI S,KIM D,HILLIGES O,et al.Kinect fusion:real-time 3D reconstruction and interaction using a moving depth camera [C]// Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology.New York:ACM,2011:559-568.
  • 9TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images [C]// Proceedings of the Sixth International Conference on Computer Vision.Washington,DC:IEEE Computer Society,1998:839-846.
  • 10PETSCHNINGG G,SZELISKI R,AGRAWALA A,et al.Digital photography with flash and no-flash image pairs [J].ACM Transactions on Graphics,2004,23(3):664-672.

共引文献31

同被引文献74

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部