期刊文献+

一种分数阶微积分算子的有理函数逼近阶数最小化方法 被引量:3

Minimum method of rational function orders for approximation fractional differential and integral operators
下载PDF
导出
摘要 针对分数阶微积分算子的实现问题,基于对数幅频特性,导出分数阶积分算子1/sγ(0<γ<1)的一种有理函数逼近公式,该式与Manabe提出的公式类似,但比它更便于分析和应用,讨论了该式应用范围的拓展。为了改善相位逼近精度,提出有理函数构建频率区间概念,它包含逼近频率区间。在满足逼近精度和逼近频率区间条件下,提出使有理函数阶数最小化的两点措施:(1)充分利用对数幅频特性渐近线与准确曲线之差,适当加宽分数阶积分算子与有理函数二者对数幅频特性之间的误差带;(2)根据逼近频率区间,合理选择函数构建频率区间。计算实例表明上述工作的有效性。 Aiming at the problem of implementation of fractional differential and integral operators, an ra- tional function approximation formula for 1/s^γ (0 〈γ 〈 1 )is derived based on logarithmic frequency characteristic. The formula is similar to the Manabe formula, but is more convinient for analysis and applica- tion. Its extension of application scope was discussed. In order to improve the accuracy of phase approximation, a rational function constructing the frequency interval is proposed. It contained the approximation frequency interval. To meet the conditions of approximation accuracy and frequency interval approximation, two measures to minimize rational function orders was presented : firtly, make full use of the error between the asymptote and the actual value of the logarithm amplitude- frequency characteristic, and appropriately broaden the error strip of the logarithm amplitude- frequency characteristic of the fractional integral operator vs the rational function;secondly, select the rational function formation frequency area reasonably based on the approximation of the frequency interval. Computation examples show that above work is valid.
作者 张旭秀 李卫东 盛虎 丁鸣艳 ZHANG Xu-xiu LI Wei-dong SHENG Hu DING Ming-yan(School of Electronics and Information Engineering, Dalian Jiaotong University, Dalian 116028, China)
出处 《电机与控制学报》 EI CSCD 北大核心 2017年第6期96-103,112,共9页 Electric Machines and Control
基金 国家科技支撑计划(2015BAF20B02) 国家自然科学基金(61471080 No.61201419) 国家留学基金资助(201608210308)
关键词 分数阶微积分算子 有理函数逼近 Manabe近似式 有理函数阶数最小化 应用范围拓展 fractional differential and integral operator rational function approximation Manabe- approx imation formula minimum of rational function orders extension of application scope
  • 相关文献

参考文献11

二级参考文献135

  • 1蒲亦非,袁晓,廖科,周激流,王永德.连续子波变换数值实现中尺度采样间隔的确定[J].四川大学学报(工程科学版),2004,36(6):111-116. 被引量:7
  • 2蒲亦非,袁晓,廖科,陈忠林,周激流.现代信号分析与处理中分数阶微积分的五种数值实现算法[J].四川大学学报(工程科学版),2005,37(5):118-124. 被引量:31
  • 3蒲亦非,袁晓,廖科,周激流.一种实现任意分数阶神经型脉冲振荡器的格形模拟分抗电路[J].四川大学学报(工程科学版),2006,38(1):128-132. 被引量:17
  • 4边学成,陈云敏.基于2.5维有限元方法分析列车荷载产生的地基波动[J].岩石力学与工程学报,2006,25(11):2335-2342. 被引量:28
  • 5MACHADO J A T. Analysis and design of fractional - order digital control systems [ J ]. Systems Analysis Model Simulation, 1997, 27(2/3) :107 - 122.
  • 6KOMADA S, MACHII N,HORI T. Control of redundant manipulators considering order of disturbance observer [ J ]. IEEE Transactions on Industrial Electronics, 2000, 47 (2) :413 -420.
  • 7LEE H S, TOMIZUKA M. Robust motion control design for high accuracy position system [ J]. IEEE Transactions on lndnstrial Electronics, 1996, 43 (1):48-55.
  • 8LUBICH C. Discretized fractional calculus[ J]. SIAM Journal on Mathematical Analysis, 1986, 17 ( 3 ) :704 - 719.
  • 9OUSTALOUP A, LEVRON F, MATHIEU B, et al. Frequencyband complex noninteger differentiator: characterization and synthesis [J]. IEEE Transactions on Circuit and Systems-I: Fundamental Theory and Applications, 2000, 47 ( 1 ) :25 - 39.
  • 10CHEN Yangquan. A new discretization method for fractional order differentiators via continued fraction expansion [ C ]//2003 ASME International Design Engineering Technical Conferences, September 2 -6, 2003, Chicago, USA. 2003:1 -9.

共引文献173

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部