摘要
配电系统中广泛使用电容器和串联调压器,以提高电力系统的稳定性。这些设备的优化配置,可以用一个综合的非线性约束优化问题来表示。在确定性情况下,该问题经常使用遗传算法来解决。然而,配电系统本质上是不确定的,导致了不准确的,并在某些条件下是保守的确定解。提出了一种新的基于微型遗传算法的概率方法来解决配置问题。对基于概率优化模型的线性约束和点估计法的两种技术进行测试和比较,以减少计算方面的工作,并将推荐的方法在IEEE 34节点不平衡配电系统中进行了测试。
Capacitors and series regulators are widely used in power distribution systems to improve the stability of power systems.The optimal configuration of these devices can be represented by an integrated nonlinear constraint optimization problem.In the case of certainty,the problem is often solved using genetic algorithms.However,the distribution system is inherently uncertain,resulting in inaccurate and deterministic determinations under certain conditions.In this paper,a new probabilistic method based on micro-genetic algorithm is proposed to solve the configuration problem.The two techniques of linear constraint and point estimation based on probabilistic optimization model are tested and compared to reduce the computational work.And the recommended method was tested in an IEEE 34-node unbalanced power distribution system.
出处
《电力与能源》
2017年第3期227-230,共4页
Power & Energy
关键词
微型遗传算法
线性约束
点估计法
microgenetic algorithm
linear constraints
point estimation method