期刊文献+

Joint DOA and channel estimation with data detection based on 2D unitary ESPRIT in massive MIMO systems 被引量:1

Joint DOA and channel estimation with data detection based on 2D unitary ESPRIT in massive MIMO systems
原文传递
导出
摘要 We propose a novel method for joint two-dimensional (2D) direction-of-arrival (DOA) and channel estimation with data detection for uniform rectangular arrays (URAs) for the massive multiple-input multiple-output (MIMO) systems. The conventional DOA estimation algorithms usually assume that the channel impulse responses are known exactly. However, the large number of antennas in a massive MIMO system can lead to a challenge in estimating accurate corresponding channel impulse responses. In contrast, a joint DOA and channel estimation scheme is proposed, which first estimates the channel impulse responses for the links between the transmitters and antenna elements using training sequences. After that, the DOAs of the waves are estimated based on a unitary ESPRIT algorithm using previous channel impulse response estimates instead of accurate channel impulse responses and then, the enhanced channel impulse response estimates can be obtained. The proposed estimator enjoys closedform expressions, and thus it bypasses the search and pairing processes. In addition, a low-complexity approach toward data detection is presented by reducing the dimension of the inversion matrix in massive MIMO systems.Different cases for the proposed method are analyzed by changing the number of antennas. Experimental results demonstrate the validity of the proposed method. We propose a novel method for joint two-dimensional (2D) direction-of-arrival (DOA) and channel estimation with data detection for uniform rectangular arrays (URAs) for the massive multiple-input multiple-output (MIMO) systems. The conventional DOA estimation algorithms usually assume that the channel impulse responses are known exactly. However, the large number of antennas in a massive MIMO system can lead to a challenge in estimating accurate corresponding channel impulse responses. In contrast, a joint DOA and channel estimation scheme is proposed, which first estimates the channel impulse responses for the links between the transmitters and antenna elements using training sequences. After that, the DOAs of the waves are estimated based on a unitary ESPRIT algorithm using previous channel impulse response estimates instead of accurate channel impulse responses and then, the enhanced channel impulse response estimates can be obtained. The proposed estimator enjoys closedform expressions, and thus it bypasses the search and pairing processes. In addition, a low-complexity approach toward data detection is presented by reducing the dimension of the inversion matrix in massive MIMO systems.Different cases for the proposed method are analyzed by changing the number of antennas. Experimental results demonstrate the validity of the proposed method.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第6期841-849,共9页 信息与电子工程前沿(英文版)
基金 supported by Ericsson and the National Natural Science Foundation of China(No.61371075)
关键词 Two-dimensional (2D) direction-of-arrival (DOA) estimation Channel impulse response estimation Data detection Uniform rectangular array (URA) Massive multiple-input multiple-output (MIMO) Two-dimensional (2D) direction-of-arrival (DOA) estimation Channel impulse response estimation Data detection Uniform rectangular array (URA) Massive multiple-input multiple-output (MIMO)
  • 相关文献

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部