期刊文献+

Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions 被引量:6

Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions
原文传递
导出
摘要 Autoimmune diseases are characterized by an imbalance between regulatory T cells and effector T-cell subsets, such as Thl and Th17 cells. Studies have confirmed that natural CD4+Foxp3+ Tregs were unstable and dysfunctional in the presence of pro-inflammatory cytokines. In the current study, human CD39hi Tregs and CD39low Tregs were sorted from Tregs in vitro after 7 days of expansion. The functions of both Treg subsets were investigated under inflammatory conditions in vitro and in vivo. In the presence of IL-1β and IL-6, cultured CD4+CD39hi Tregs maintained stable forkhead box protein 3 expression, whereas CD4+CD39low Tregs lost Foxp3 expression and trans-differentiated into Thl or Th17 cells. Decreased IL-1βR and IL-6R expression on the CD39hi Tregs was the primary mechanism responsible for Treg stability. In addition, reduced activation of downstream molecules, such as STAT1 and STAT3, through the modulation of CpG demethylation played an important role. Finally, human CD4+CD39hi Tregs but not CD4+CD39low Tregs protected against xenograft versus host disease in model mice. These results strongly implied the physiological importance of CD39 expression and suggested that manipulation of CD39hi Tregs might represent a novel strategy for the treatment of autoimmune diseases. Autoimmune diseases are characterized by an imbalance between regulatory T cells and effector T-cell subsets, such as Thl and Th17 cells. Studies have confirmed that natural CD4+Foxp3+ Tregs were unstable and dysfunctional in the presence of pro-inflammatory cytokines. In the current study, human CD39hi Tregs and CD39low Tregs were sorted from Tregs in vitro after 7 days of expansion. The functions of both Treg subsets were investigated under inflammatory conditions in vitro and in vivo. In the presence of IL-1β and IL-6, cultured CD4+CD39hi Tregs maintained stable forkhead box protein 3 expression, whereas CD4+CD39low Tregs lost Foxp3 expression and trans-differentiated into Thl or Th17 cells. Decreased IL-1βR and IL-6R expression on the CD39hi Tregs was the primary mechanism responsible for Treg stability. In addition, reduced activation of downstream molecules, such as STAT1 and STAT3, through the modulation of CpG demethylation played an important role. Finally, human CD4+CD39hi Tregs but not CD4+CD39low Tregs protected against xenograft versus host disease in model mice. These results strongly implied the physiological importance of CD39 expression and suggested that manipulation of CD39hi Tregs might represent a novel strategy for the treatment of autoimmune diseases.
出处 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2017年第6期521-528,共8页 中国免疫学杂志(英文版)
关键词 CD39 STABILITY TREGS xeno-GVHD CD39 stability Tregs xeno-GVHD
  • 相关文献

同被引文献16

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部