期刊文献+

Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential

Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential
下载PDF
导出
摘要 We present a theoretical study of quantum charge pumping in metallic armchair graphene nanoribbons using the Floquet Green function method. A central part of the ribbon acting as the scattering region is supposed to have staggered sublattiee potential to open a finite band gap. A single ae gate is asymmetrically applied to a part of the scattering region to drive the pumping. Corresponding to the gap edges, there are two pumped current peaks with opposite current directions, which can be reversed by changing the position of the ac gate relative to the scattering region. The effects of the parameters, such as the staggered sublattice potential, the driving frequency and the geometric parameters of the structure, on the pumping are discussed. We present a theoretical study of quantum charge pumping in metallic armchair graphene nanoribbons using the Floquet Green function method. A central part of the ribbon acting as the scattering region is supposed to have staggered sublattiee potential to open a finite band gap. A single ae gate is asymmetrically applied to a part of the scattering region to drive the pumping. Corresponding to the gap edges, there are two pumped current peaks with opposite current directions, which can be reversed by changing the position of the ac gate relative to the scattering region. The effects of the parameters, such as the staggered sublattice potential, the driving frequency and the geometric parameters of the structure, on the pumping are discussed.
机构地区 Department of Physics
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期96-100,共5页 中国物理快报(英文版)
基金 Supported by the K.C.Wong Magna Fund in Ningbo University the National Natural Science Foundation of China under Grant No 11474174
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部