期刊文献+

脉冲流信号的压缩感知技术

Compressive sensing technique of pulse stream signal
下载PDF
导出
摘要 基于实际应用中脉冲流信号的处理面临严峻挑战,压缩感知技术能使信号的采样速率不再取决于信号带宽,而取决于信号中的信息内容,进而获得亚奈奎斯特率采样。因此,可将脉冲流信号进行压缩采样处理,通过构建信号的结构模型,选择合适的测量矩阵,如多通道压缩采样结构中的周期性混频,从而获得更新率采样。多通道压缩采样方法先输入信号与调制波形混频,之后积分并获得信号傅里叶系数的混合样值。未知参数可采用标准谱估计方法从傅里叶系数获得。相对于单通道采样方法,多通道压缩采样结构性能鲁棒,易于电路实现,适于各种脉冲流信号应用。 As to the the serious challenges, the application of pulse stream signal processing is faced, compressed sensing technology can make the signal sampling rate no longer depend on the signal bandwidth, but depend on the signal bandwidth to obtain the sub Nyquist sampling rate. So the pulse stream signal can be sampled and processed, through the structure model of the signal, the appropriate measurement matrix is selected, such as multi-channel periodic mixing compression sampling structure, so as to obtain the innovation rate of sampling. The multi-channel compression sampling method mixes the input signal with the modulation waveform first, then integrates and obtains the mixed sample value of the signal Fourier coefficient. The unknown parameters can be obtained from the Fourier coefficients using standard spectral estimation methods. Compared with the single channel sampling method, the muhi-channel compression sampling structure is robust and easy to implement. It is suitable for various pulse flow signals.
出处 《天津职业技术师范大学学报》 2017年第2期32-36,共5页 Journal of Tianjin University of Technology and Education
基金 天津市自然科学基金资助项目(15JCYBJC52200)
关键词 脉冲流 压缩采样 多通道结构 压缩感知 傅里叶系数 pulse stream compressed sampling muhiple channel compressive sensing Fourier coefficients
  • 相关文献

参考文献1

二级参考文献102

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 3Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 4B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 5Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 6M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 7R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 8M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 9K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007
  • 10H Zayyani,M Babaie-Zadeh.Thresholded smoothed-L0 (SL0)dictionary learning for sparse representations. IEEE Inter-national Conference on Acoustics,Speech and Signal Process-ing . 2009

共引文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部