期刊文献+

基于加权矢量场的轨迹层次聚类 被引量:1

Trajectory hierarchical clustering based on weighted vector field
下载PDF
导出
摘要 传统的轨迹聚类方法存在定义轨迹相似度难度大,聚类过程中容易忽略轨迹细节等问题。基于矢量场的轨迹聚类(VFC)在保持轨迹原始运动特征的基础上,利用矢量场的几何结构可以很好地度量轨迹相似度。引入加权拟合方法,降低噪声对聚类的影响,以解决VFC鲁棒性较差问题。采用层次聚类动态地决定聚类类别数,以解决聚类类别数不能自适应的问题,提高聚类有效性。采用亚特兰大飓风数据作为实验原始轨迹数据,分别使用经典矢量场的轨迹聚类,k-means聚类,k-mediods聚类以及提出的方法进行实验,实验结果证明了加权拟合矢量场的层次聚类算法的有效性。 It is hard to define similarity of trajectories and trends to ignore details of trajectories using a traditional trajectory clustering method. Vector field based clustering methods keep the inherent features of movements and measures similarities of trajectories with the geometric structure information derived from it. Weighted fitting scheme is introduced to weaken the effects of noises and increase the robustness of clustering. A hierarchical approach is employed to automatically determine the number of class solving the problem that traditional methods cannot be self-adaptive to clustering,thus improving the effectiveness of our method. Experiments of traditional vector field clustering,k-means clustering and k-mediods clustering as well as the proposed method are conducted on the Atlanta Hurricane dataset,and the result shows the effectiveness of the hierarchical clustering algorithm based on weighted vector field.
作者 陈琳 王蒙
出处 《传感器与微系统》 CSCD 2017年第6期10-13,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金地区基金资助项目(61563025) 云南省教育厅科学研究基金资助项目(2015Z047)
关键词 轨迹 矢量场聚类 加权拟合 层次聚类 trajectory vector field clustering weighted fitting hierarchical clustering
  • 相关文献

参考文献3

二级参考文献32

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2郭庆来,孙宏斌,张伯明,吴文传.基于无功源控制空间聚类分析的无功电压分区[J].电力系统自动化,2005,29(10):36-40. 被引量:124
  • 3杨秀媛,董征,唐宝,陈树勇.基于模糊聚类分析的无功电压控制分区[J].中国电机工程学报,2006,26(22):6-10. 被引量:78
  • 4朱剑,赵海,孙佩刚,毕远国.基于RSSI均值的等边三角形定位算法[J].东北大学学报(自然科学版),2007,28(8):1094-1097. 被引量:76
  • 5Wang G, Fidan B. Localization algorithms and strategies for wire- less sensor networks [ M ]. New York : Information Science Refe- rence, 2009 : 112.
  • 6Zhou G, He T, Krishnamurthy S, et al. Models and solutions for radio irregularity in wireless sensor networks [ J ]. ACM Transac-tions on Sensor Networks ,2006,2 (2) :221 --262.
  • 7Whitehouse C D. Understanding the prediction gap in multi-hop localization [ D ]. Berkeley : University of California at Berkeley, 2006.
  • 8Poggi C,Mazzini G. Colhnearity for sensor network localization [ C ]// Proceedings of 2003 IEEE 58th Vehicular Technology Confe- rence, Piscataway, N J, USA : IEEE ,2004:3040 --3043.
  • 9Huber P J. Robust Statistics [ M ]. New York:Wiley. 1981.
  • 10Rappaport T S.. Wireless Communications : Principle and Prac- tice[ M ]. 2rid ed, New Jersey : Prentice Hall ,2002:69 -138.

共引文献17

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部