摘要
介绍了利用BP神经网络进行连铸结晶器漏钢预报的基本方法,优化神经网络系统的结构和参数,介绍了粘结性漏钢的温度波形特点,同时用C#开发了单偶、横向、纵向漏钢预报系统,能快速准确地对粘结性漏钢进行预报。
By using BP neural network is introduced for continuous casting crystallizer and the basic methods of breakout prediction, optimizing the structure of neural network system and parameters, this paper introduces the temperature wave characteristics of bonding steel leakage, at the same time with c # developed single accidentally, transverse, longitudinal steel leakage prediction system, can rapidly and accurately for bonding steel leakage prediction.
出处
《世界有色金属》
2017年第8期213-214,共2页
World Nonferrous Metals
关键词
连铸
粘结性漏钢
漏钢预报
神经元网络
continuous casting
Bonding steel leakage
steel leakage prediction
neural network