摘要
作为WSN网络覆盖中的热点问题之一,Sweep Coverage旨在以较少的传感节点覆盖所有的兴趣点(POIs)。针对现有Sweep Coverage机制中存在的不足,本文提出一种基于聚类的二阶段网络覆盖机制:数据感知阶段,采用通过减法聚类改进的K-means算法对POIs分簇,并寻求各簇中访问POIs的近似最优路径;数据传输阶段,寻求数据传输节点的最优访问路径。实验表明,在相同网络场景下,本文提出的二阶段网络覆盖机制有较好的效果。
As a hot issue in WSN network coverage,Sweep Coverage aims to cover all points of interest (POIs) with fewer sensor nodes.Aiming at the deficiency of the existing Sweep Coverage mechanism,this paper proposes a two-stage network coverage mechanism based on clustering:in the data sensing phase,clustering POIs by K-means algorithm based on subtractive clustering and searching for the approximate optimal path of POIs in each of clusters; and in the data transmission phase,seeking the optimal access path of the data transmission node.The experimental results show that under the same network scenario,the proposed two-stage network coverage mechanism has better performance.
出处
《软件工程》
2017年第5期23-26,共4页
Software Engineering