期刊文献+

基于聚类的二阶段无线传感网络Sweep Coverage机制

Two-Stage Sweep Coverage Mechanism in WSN Based on Clustering
下载PDF
导出
摘要 作为WSN网络覆盖中的热点问题之一,Sweep Coverage旨在以较少的传感节点覆盖所有的兴趣点(POIs)。针对现有Sweep Coverage机制中存在的不足,本文提出一种基于聚类的二阶段网络覆盖机制:数据感知阶段,采用通过减法聚类改进的K-means算法对POIs分簇,并寻求各簇中访问POIs的近似最优路径;数据传输阶段,寻求数据传输节点的最优访问路径。实验表明,在相同网络场景下,本文提出的二阶段网络覆盖机制有较好的效果。 As a hot issue in WSN network coverage,Sweep Coverage aims to cover all points of interest (POIs) with fewer sensor nodes.Aiming at the deficiency of the existing Sweep Coverage mechanism,this paper proposes a two-stage network coverage mechanism based on clustering:in the data sensing phase,clustering POIs by K-means algorithm based on subtractive clustering and searching for the approximate optimal path of POIs in each of clusters; and in the data transmission phase,seeking the optimal access path of the data transmission node.The experimental results show that under the same network scenario,the proposed two-stage network coverage mechanism has better performance.
作者 成璐
出处 《软件工程》 2017年第5期23-26,共4页 Software Engineering
关键词 SWEEP COVERAGE 数据感知 数据传输 K-MEANS Sweep Coverage data sensing data transmission K-means
  • 相关文献

参考文献3

二级参考文献32

  • 1BAI Xiao-le; XUAN Dong, YUN Zi-qiu, et al. Complete optimal de- ployment patterns for full-coverage and k-connectivity( k ≤6) wireless sensor networks [ C ]//Proe of the 9th ACM International Symposium on Mobile Ad hoc Networking and Computing. New York :ACM Press, 2008 : 401-410.
  • 2YANG Guan-qun,QIAO Da-ji. Barrier information coverage with wire- less sensbrs[ C]//proc of IEEE Conference on Computer Communica- tions. 2009:918 -926.
  • 3CHENG Wei-fang, LI Mo, LIU Ke-bin, et al. Sweep coverage with mo- bile sensors [ C ]//Proc of IEEE International Symposium on Parallel and Distributed Processing. Washington DC : tEEE Computer Society, 2008 : 1-9.
  • 4JAIN A. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters ,2010,31 ( 8 ) :651-666.
  • 5PELLEG D, MOORE A. X-means: extending K-means with efficient estimation of the number of dusters [ C ]//Proe of the 17thiInterna- tional Conference on Machine Learning. San Franeiseo: Morgan Kauf- mann, 2000:727-734.
  • 6KASS R E, WASSERMAN L. A reference Bayesian test for nested hy- pothesis and its relationship to the Schwarz criterion [J ]. Journal of the American Statistical Association, 1995,90(431 ):928-934.
  • 7ARORA S. Polynomial time approximation schemes for Euclidean TSP and other geometric problems [ C ]//Proc of the 37th Annual IEEE Symposium on Foundations of Computer Science. [ S. 1. ] :IEEE Com- puter Society, 1996 : 2-11.
  • 8Canadian Forest Service. Canadian national fire database:agency fire data[ EB/OL]. http ://cwfis. cfsl nrcan, gc. ca/en_CA/nfdb.
  • 9Cheng W F,Li M,Liu K,et al.Sweep coverage with mobile sensors. IEEE International Symposium on Parallel and Distributed Processing . 2008
  • 10Gaboune B,Laportre G,Soumis F.Expected distances between two uniformly distributed random points in rectangles and rectangular parallelpiped. Journal of the Operational Research Society . 1993

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部