期刊文献+

改进加权融合在消除图像拼接重影中的运用 被引量:3

The Application of Improved Weight Fusion to Eliminate Ghosting in Image Mosaics
下载PDF
导出
摘要 为消除拼接图像间重叠部分出现的重影问题,本文提出了改进加权融合算法。首先,采用SURF算法对图像进行特征匹配,得到对应的不变矩阵H;然后,采用改进加权融合算法求取加权系数;最后,通过加权系数对待拼接图像进行融合,从而减少拼接融合时两幅图像的差异,以达到消除重影的目的。实验中分别采用了加权融合、动态规划寻找拼接线法、HSI算法以及本文提出的改进加权融合法进行测试。结果表明,所提算法能自适应的消除运动目标的干扰,灰度标准差、信息熵加权、清晰度加权评价指标相比其他融合拼接算法均有所提高,融合图像的质量与清晰度得到改善。 In this paper, the improved weighted fusion algorithm is proposed to eliminate ghosting between the mosaic images.Firstly,the SURF algorithm is used to match the features of the images,and then the corresponding invariant matrix H is obtained.Secondly, the weight coefficients are obtained by adopting the improved weight fusion algorithm.Finally, the weight coefficients are used to fuse the mosaic images, so as to reduce the difference between the two images in the mosaic fusion and achieve the goal of eliminating ghosting.In the experiment,the weight fusion,the dynamic programming,the HSI algorithm and the improved weight fusion method are adopted for testing.The results show that the proposed algorithm can eliminate the interference of adaptive moving objects,and the gray standard deviation,the information entropy and the definition weight evaluation indicators are effectively enhanced,compared with other image mosaic algorithms. Additionally, the quality and the clarity of the fusion images are improved.
作者 徐敏
出处 《软件工程》 2017年第5期27-29,14,共4页 Software Engineering
基金 第二批重庆市高等学校青年骨干教师资助项目(自然科学类) 重庆工业职业技术学院科研项目(项目编号:GZY201517-YK)
关键词 SURF算法 重影 改进加权融合 SURF algorithm ghosting improved weight fusion
  • 相关文献

参考文献9

二级参考文献112

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 3章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 4Yi Yaohua,Yu Xiaoqing.Image Quality Assessment Based on Structural Distortion and Image Definition[C]//Proc.of CSSE'08.[S.l.]:IEEE Press,2008:253-256.
  • 5Wang Zhou,Bovik A C,Lu Ligang.Why is Image Quality Assessment So Difficult[J].IEEE Signal Processing Letters,2002,4(3):3313-3316.
  • 6Lowe D.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Harris C G,Stephens M J.A Combined Corner and Edge Detector[C]//Proc.of the 4th Alvey Vision Conference.Manchester,UK:[s.n.],1988.
  • 8孙艳丽,周伟,关键.SIFT与Harris特征提取算法在SAR图像自动配准中的应用及性能分析[C]//第十届全国雷达学术年会论文集.北京,2008:1059-1062.
  • 9Wolfson H.J.. On curve matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(5): 483~489.
  • 10Ucoluk G., Toroslu I.H.. Automatic reconstruction of broken 3-D surface objects. Computers and Graphics, 1999, 23(4): 573~582.

共引文献90

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部