摘要
针对可变形部件模型(deformable parts model,DPM)同等对待各部件,无法体现不同部件对识别过程的贡献度差异的不足,提出一种权重系数可变形模型(weighted coefficient deformable parts model,WCDPM),对DPM中的各部件赋予权重,强调区分度较高的部件在识别过程的作用,弱化区分度低的部件对识别的影响,提高细粒度识别精度.同时给出了模型的训练过程和权重系数的学习方法.在Airplan OID和Oxford-IIIT Pet两个数据集上进行实验,验证了该方法的有效性.
Since i t treats the parts equally,while the deformable parts model ( DPM) cannot highlight distinctive parts that are helpful to distinguishing subtle categories. To cope with the problem mentioned above,a weighted coefficient deformable parts model (WCDPM) was proposed to highlight distinctive parts and decrease the influence of non-distinctive parts,which leaded to improving performance in terms of fine-grained recognition accuracy. The detailed processes of model training and coefficient learning were also presented. Experimental results of Airplan OID and Oxford-IIIT Pet data sets demonstrate the effectiveness of the proposed method.
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2017年第7期1023-1030,共8页
Journal of Beijing University of Technology
基金
国家自然科学基金资助项目(81471770)
北京市教育委员会科研计划资助项目(KM201410005005)
北京市属高等学校青年拔尖人才培育计划资助项目(CIT&TCD201404039)
北京工业大学"智能制造领域大科研推进计划"资助项目