摘要
给出非单C~*-代数α-比较性的等价刻画:当每个τ∈QT(■H)均为忠实时,■具有α-比较性,当且仅当对于任意的〈a〉,〈b〉∈Cu(■)且<a>∝<b>,若α·d_τ(a)<d_τ(b)(_τ∈QT(■H))则<a>≤<b>在Cu(■)中成立;一般地,当QT(■H)≠Φ时,■具有α-比较性,当且仅当对于任意的<a>,<b>∈Cu(■),若存在η>0,使得d_τ(α)≤(α^(-1)-η)d_τ(b)(_τ∈QT(■H)),则<a>≤<b>在Cu(■)中成立.
Abstract This note is to give such characterizations of the a-comparison property for non-simple C*-algebras: when each τ∈QT(A H)is faithful, A has the a-comparison property, if and only if, for any 〈a〉,〈b〉∈Cu(A) with 〈a〉∝〈b〉,a·dτ(a)〈dτ(b)(∨τ∈QT(A H))implies (a) ≤(b) in Cu(A);in general, when QT(A H)≠θ,A has the a-comparison property, if and only if, for any 〈a〉,〈b〉∈Cu(A),if there is some η〉0such that dτ(a)≤(a^-1-η)dτ(b)(Vτ)∈QT(A H)),then 〈a〉≤〈b〉 in Cu(A).
出处
《数学学报(中文版)》
CSCD
北大核心
2017年第4期705-712,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(11371279)
中北大学校青年基金
山西省回国留学人员科研资助项目
关键词
α-比较性
Cuntz半群
下半连续的拟迹
a-comparison property
Cuntz semigroup
lower semi-continuous qua-sitrace