期刊文献+

一种模糊C均值聚类的影像分类方法 被引量:1

An Image Classification Method Based on Fuzzy C-means Clustering
下载PDF
导出
摘要 针对传统的模糊C均值聚类(fuzzy c-means clustering,FCM)后处理方法往往不能有效划分较优类别的问题,提出了一种聚类结果明确化的新方法,命名为邻域加权隶属度和(neighboring weighted membership grade sum,NMS)方法。方法增加了邻域信息的使用,采用了阈值加权和反距离加权处理聚类结果,并以多种类型遥感影像为测试实例,进行了不同方法的影像分类对比研究。结果表明,分类结果全局精度比最大隶属度方法平均提高约8%,Kappa系数平均提高11%;同时噪声图斑数量下降,图斑具有更好的完整性;新方法对具体分类问题的使用更具灵活性与普适性。 In order to solve the problem that the traditional post-processing method of fuzzy c-means clustering(FCM)cannot effectively classify the remote sensing image,in this paper,a new method for clarifying clustering results is proposed,which is called neighboring weighted membership grade sum(NMS)method.The method increases the use of neighborhood information and adopts threshold weighting and inverse distance weighting.Through various types of remote sensing images for testing,different methods of image classification have been studied.Results show that the whole classification accuracy and Kappa coefficient of the new mothed is 8% and 11% higher than that of the maximum membership,respectively;the noise figure spot number of classification results decreases,and the integrity of map spot is better;the new method is more flexible and universal for the use of specific classification problems.
出处 《遥感信息》 CSCD 北大核心 2017年第3期86-92,共7页 Remote Sensing Information
基金 国家自然科学基金(41071275)
关键词 模糊C均值聚类 解模糊 阈值加权 反距离加权 邻域加权隶属度和 FCM clustering defuzzifying threshold weighting inverse distance weighting neighboring weighted membership grade sum
  • 相关文献

参考文献3

二级参考文献26

  • 1余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程,2007,34(4):114-119. 被引量:20
  • 2李明,李云松.改进的快速模糊C均值聚类的图像分割方法[J].兰州理工大学学报,2007,33(3):95-99. 被引量:12
  • 3J C Bezdek.Pattern Recognition with Fuzzy Objective Function Algorithms[M].Plenum Press,New York,1981.
  • 4A M Bensaid,L O Hall.Partially Supervised Clustering for Image Segmentation[ J].Pattern Recognition,1996,29(5) :859-872.
  • 5W Pezdrcy.Condition Fuzzy C- Meams.Pattern Recognition Letters [C] .1996,17:625.
  • 6N R Pal,J C Bezdek.on Cluster Validity for the Fuzzy C- Means Model[J].IEEE Trans,Fuzzy Systems,1995,3(4) :370-379.
  • 7Karasulu B, Korukoglu S. A simulated annealing-basedoptimal threshold determining method in edge-based segmentation of gray.ale images [ J ]. Applied .Soft Computing, 2011,11 (2) : 2246 - 2259.
  • 8lsa N A M. Salamah S A. Ngah U K. Adaptive fuzzy moving K-means clustering algorithm for image segmentation [J]. IEEE Transactionzs on Comsumer Electromics . 2009.55 (4) : 2145- 2153.
  • 9Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactioms on .Syvstems, Man, and Cybernetics, Part B : (Cyberneticx , 2004,34(4 ) : 1907 1916.
  • 10Ji Z X, Sun Q S, Xia D S. A framework with modified fast FCM for brain MR images segmentation [ J ]. Pattern Recognition, 2011,44 ( 5 ) : 999 - 1013.

共引文献15

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部